- You identified and modeled points, lines, and planes.

NewVocabulary
line segment betweenness of points between congruent segments construction circular arc.
G.C0.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.).

Mathematical Practices
6 Attend to precision.
Measure Line Segments Unlike a line, a line segment, or segment, can be measured because it has two endpoints. A segment with endpoints A and B can be named as $\overline{A B}$ or $\overline{B A}$. The measure of $\overline{A B}$ is written as $A B$. The length or measure of a segment always includes a unit of measure, such as meter or inch. All measurements are approximations dependent upon the smallest unit of measure available on the measuring instrument.

Example 1 Length in Metric Units
Find the length of $\overline{A B}$ using each ruler.
a.

The ruler is marked in centimeters. Point B is closer to the 4 -centimeter mark than to 3 centimeters.
Thus, $\overline{A B}$ is about 4 centimeters long.

GuidedPractice
1A. Measure the length of a dollar bill in centimeters.
1B. Measure the length of a pencil in millimeters.
1C. Find the length of $\overline{C D}$.
b.

The long marks are centimeters, and the shorter marks are millimeters. There are 10 millimeters for each centimeter.
Thus, $\overline{A B}$ is about 3.7 centimeters long.

StudyTip

Using a Ruler The zero point on a ruler may not be clearly marked. For some rulers, zero is the left edge of the ruler. On others, it may be a fine line farther in on the scale. If it is not clear where the zero is, align one endpoint on 1 and subtract 1 from the measurement at the other endpoint.

Example 2 Length in Standard Units

Find the length of $\overline{C D}$ using each ruler.

a.

Each inch is divided into fourths.
Point D is closer to the $1 \frac{1}{4}$-inch mark.
$\overline{C D}$ is about $1 \frac{1}{4}$ inches long.

Each inch is divided into sixteenths.
Point D is closer to the $1 \frac{4}{16}$-inch mark.
$\overline{C D}$ is about $1 \frac{4}{16}$ or $1 \frac{1}{4}$ inches long.

GuidedPractice

2A. Measure the length of a dollar bill in inches.
2B. Measure the length of a pencil in inches.

2
Calculate Measures Recall that for any two real numbers a and b, there is a real number n that is between a and b such that $a<n<b$. This relationship also applies to points on a line and is called betweenness of points. In the figure, point N is between points A and B, but points R and P are not.

Measures are real numbers, so all arithmetic operations can be used with them. You know that the whole usually equals the sum of its parts. That is also true of line segments in geometry.

KeyConcept Betweenness of Points

Words
Point M is between points P and Q if and only if P, Q, and M are collinear and $P M+M Q=P Q$.

Model

StudyTip

Comparing Measures Because measures are real numbers, you can compare them. If points X, Y, and Z are collinear in that order, then one of these statements is true: $X Y=Y Z, X Y>Y Z$, or $X Y<Y Z$.

Example 3 Find Measurements by Adding

Find $E G$. Assume that the figure is not drawn to scale.
$E G$ is the measure of $\overline{E G}$. Point F is between E and G. Find $E G$ by adding $E F$ and $F G$.

$$
\begin{aligned}
E F+F G & =E G & & \text { Betweenness of points } \\
2 \frac{3}{4}+2 \frac{3}{4} & =E G & & \text { Substitution } \\
5 \frac{1}{2} \text { in. } & =E G & & \text { Add. }
\end{aligned}
$$

GuidedPractice

3. Find JL. Assume that the figure is not drawn to scale.

Find $A B$. Assume that the figure is not drawn to scale.
Point B is between A and C.

$$
\begin{aligned}
A B+B C & =A C & & \text { Betweenness of points } \\
A B+5.8 & =13.2 & & \text { Substitution } \\
A B+5.8-5.8 & =13.2-5.8 & & \text { Subtract } 5.8 \text { from each side. } \\
A B & =7.4 \mathrm{~m} & & \text { Simplify. }
\end{aligned}
$$

GuidedPractice

4. Find $Q R$. Assume that the figure is not drawn to scale.

Example 5 Write and Solve Equations to Find Measurements

ALGEBRA Find the value of a and $X Y$ if Y is between X and $Z, X Y=3 a, X Z=5 a-4$, and $Y Z=14$.

Draw a figure to represent this information.

$$
\begin{aligned}
X Z & =X Y+\Upsilon Z & & \text { Betweenness of points } \\
5 a-4 & =3 a+14 & & \text { Substitution } \\
5 a-4-3 a & =3 a+14-3 a & & \text { Subtract 3a from each side. } \\
2 a-4 & =14 & & \text { Simplify. } \\
2 a-4+4 & =14+4 & & \text { Add } 4 \text { to each side. } \\
2 a & =18 & & \text { Simplify. } \\
\frac{2 a}{2} & =\frac{18}{2} & & \text { Divide each side by } 2 . \\
a & =9 & & \text { Simplify. }
\end{aligned}
$$

Now find $X Y$.

$$
\begin{aligned}
X Y & =3 a & & \text { Given } \\
& =3(9) \text { or } 27 & & a=9
\end{aligned}
$$

GuidedPractice

5. Find x and $B C$ if B is between A and $C, A C=4 x-12, A B=x$, and $B C=2 x+3$.

Segments that have the same measure are called congruent segments.

Watch0ut!

Equal vs. Congruent Lengths are equal and segments are congruent. It is correct to say that $A B=C D$ and $\overline{A B} \cong \overline{C D}$. However, it is not correct to say that $\overline{A B}=\overline{C D}$ or that $A B \cong C D$.

KeyConcept Congruent Segments

Words
Congruent segments have the same measure.
Symbols \cong is read is congruent to. Red slashes on the figure also indicate congruence.
Example $\quad \overline{A B} \cong \overline{C D}$

Real-WorldLink
The first commercial skateboard was introduced in 1959. Now there are more than 500 skate parks in the United States.

Source: Encyclopaedia Britannica

SKATE PARKS In the graph, suppose a segment was drawn along the top of each bar. Which states would have segments that are congruent? Explain.

Source: SITE Design Group, Inc.
The segments on the bars for Nebraska and South Carolina would be congruent because they both represent the same number of skate parks.

GuidedPractice

6A. Suppose Oklahoma added another skate park. The segment drawn along the bar representing Oklahoma would be congruent to which other segment?

6B. Name the congruent segments in the sign shown.

Drawings of geometric figures are created using measuring tools such as a ruler and protractor. Constructions are methods of creating these figures without the benefit of measuring tools. Generally, only a pencil, straightedge, and compass are used in constructions. Sketches are created without the use of any of these tools.

You can construct a segment that is congruent to a given segment.

Construction Copy a Segment

Step 1 Draw a segment $\overline{J K}$. Elsewhere on your paper, draw a line and a point on the line. Label the point Q.

Step 2 Place the compass at point J and adjust the compass setting so that the pencil is at point K.

Step 3 Using that setting, place the compass point at Q and draw an arc that intersects the line. Label the point of intersection R. $\overline{J K} \cong \overline{Q R}$

Example 1 Find the length of each line segment or object.
1.

2.

Example 2

3.

4.

Examples 3-4 Find the measurement of each segment. Assume that each figure is not drawn to scale.
5. $\overline{C D}$

6. $\overline{R S}$

Example $5 \quad$ ALGEBRA Find the value of x and $B C$ if B is between C and D.
(7) $C B=2 x, B D=4 x$, and $B D=12$
8. $C B=4 x-9, B D=3 x+5$, and $C D=17$

Example 6
9. CCSS STRUCTURE The Indiana State Flag was adopted in 1917. The measures of the segments between the stars and the flame are shown on the diagram in inches. List all of the congruent segments in the figure.

12.

13.

Examples 3-4 Find the measurement of each segment. Assume that each figure is not drawn to scale.
14. $\overline{E F}$

15. $\overline{J L}$

16. $\overline{P R}$

17. $\overline{S V}$

18. $\overline{W Y}$

19. $\overline{F G}$

20. CCSS SENSE-MAKING The stacked bar graph shows the number of canned food items donated by the girls and the boys in a homeroom class over three years. Use the concept of betweenness of points to find the number of cans donated by the boys for each year. Explain your method.

Homeroom Canned Food Donations

Example $5 \quad$ ALGEBRA Find the value of the variable and $Y Z$ if Y is between X and Z.

21. $X Y=11, Y Z=4 c, X Z=83$
22. $X Y=6 b, Y Z=8 b, X Z=175$
23. $X Y=7 a, Y Z=5 a, X Z=6 a+24$
24. $X Y=11 d, Y Z=9 d-2, X Z=5 d+28$
25. $X Y=4 n+3, Y Z=2 n-7, X Z=22$
26. $X Y=3 a-4, Y Z=6 a+2, X Z=5 a+22$

Example 6 Determine whether each pair of segments is congruent.
(27) $\overline{K J}, \overline{H L}$

28. $\overline{A C}, \overline{B D}$

31. $\overline{M N}, \overline{R Q}$

29. $\overline{E H}, \overline{F G}$

32. $\overline{S U}, \overline{V T}$

(33) TRUSSES A truss is a structure used to support a load over a span, such as a bridge or the roof of a house. List all of the congruent segments in the figure.

34. CONSTRUCTION For each expression:

- construct a segment with the given measure,
- explain the process you used to construct the segment, and
- verify that the segment you constructed has the given measure.
a. $2(X Y)$
b. $6(W Z)-X Y$

35. BLUEPRINTS Use a ruler to determine at least five pairs of congruent segments with labeled endpoints in the blueprint at the right.

36. 5 MULTIPLE REPRESENTATIONS Betweenness of points ensures that a line segment may be divided into an infinite number of line segments.
a. Geometric Use a ruler to draw a line segment 3 centimeters long. Label the endpoints A and D. Draw two more points along the segment and label them B and C. Draw a second line segment 6 centimeters long. Label the endpoints K and P. Add four more points along the line and label them L, M, N, and O.
b. Tabular Use a ruler to measure the length of the line segment between each of the points you have drawn. Organize the lengths of the segments in $\overline{A D}$ and $\overline{K P}$ into a table. Include a column in your table to record the sum of these measures.
c. Algebraic Give an equation that could be used to find the lengths of $\overline{A D}$ and $\overline{K P}$. Compare the lengths determined by your equation to the actual lengths.

H.O.T. Problems Use Higher-Order Thinking Skills

37. WRITING IN MATH If point B is between points A and C, explain how you can find $A C$ if you know $A B$ and $B C$. Explain how you can find $B C$ if you know $A B$ and $A C$.
38. OPEN ENDED Draw a segment $\overline{A B}$ that measures between 2 and 3 inches long. Then sketch a segment $\overline{C D}$ congruent to $\overline{A B}$, draw a segment $\overline{E F}$ congruent to $\overline{A B}$, and construct a segment $\overline{G H}$ congruent to $\overline{A B}$. Compare your methods.
39. Challenge Point K is between points J and L. If $J K=x^{2}-4 x, K L=3 x-2$, and $J L=28$, write and solve an equation to find the lengths of $J K$ and $K L$.
40. COSS REASONING Determine whether the statement If point M is between points C and D, then $C D$ is greater than either $C M$ or MD is sometimes, never, or always true. Explain.
41. ERITING IN MATH Why is it important to have a standard of measure?

Standardzed Test Practice

42. SHORT RESPONSE A 36-foot-long ribbon is cut into three pieces. The first piece of ribbon is half as long as the second piece of ribbon. The third piece is 1 foot longer than twice the length of the second piece of ribbon. How long is the longest piece of ribbon?
43. In the figure, points A, B, C, D, and E are collinear. If $A E=38, B D=15$, and $\overline{B C} \cong \overline{C D} \cong \overline{D E}$, what is the length of $\overline{A D}$?
A 7.5
C 22.5
B 15
D 30.5
44. SAT/ACT If $f(x)=7 x^{2}-4 x$, what is the value of $f(2)$?
F -8
J 17
G 2 K 20

H 6
45. ALGEBRA

Simplify $\left(3 x^{2}-2\right)(2 x+4)-2 x^{2}+6 x+7$.
A $4 x^{2}+14 x-1$
B $4 x^{2}-14 x+15$
C $6 x^{3}+12 x^{2}+2 x-1$
D $6 x^{3}+10 x^{2}+2 x-1$

Spiral Roview

Refer to the figure. (Lesson 1-1)

46. What are two other names for $\overleftrightarrow{A B}$?
47. Give another name for plane \mathcal{P}.
48. Name the intersection of plane P and $\overleftrightarrow{A B}$.
49. Name three collinear points.

50. Name two points that are not coplanar.
51. CLOCKS The period of a pendulum is the time required for it to make one complete swing back and forth. The formula of the period P in seconds of a pendulum is $P=2 \pi \sqrt{\frac{\ell}{32}}$, where ℓ is the length of the pendulum in feet. (Lesson 0-9)
a. What is the period of the pendulum in the clock shown to the nearest tenth of a second?
b. About how many inches long should the pendulum be in order for it to have a period of 1 second?

Solve each inequality. (Lesson 0-6)
52. $-14 n \geq 42$
53. $p+6>15$
54. $-2 a-5<20$
55. $5 x \leq 3 x-26$

Skills Review

Evaluate each expression if $a=-7, b=4, c=-3$, and $d=5$.
56. $b-c$
57. $|a-d|$
58. $|d-c|$
59. $\frac{b-a}{2}$
60. $(a-c)^{2}$
61. $\sqrt{(a-b)^{2}+(c-d)^{2}}$

