Measuring Angles and Arcs

706 | Lesson 10-2

StudyTip

Naming Arcs Minor arcs are named by their endpoints. Major arcs and semicircles are named by their endpoints and another point on the arc that lies between these endpoints.

KeyConcept Arcs and Arc Measure		
Arc	Measure	
A <mark>minor arc</mark> is the shortest arc connecting two endpoints on a circle.	The measure of a minor arc is less than 180 and equal to the measure of its related central angle. $\widehat{mAB} = m \angle ACB = x$	A x° B
A <mark>major arc</mark> is the longest arc connecting two endpoints on a circle.	The measure of a major arc is greater than 180, and equal to 360 minus the measure of the minor arc with the same endpoints. $\widehat{mADB} = 360 - \widehat{mAB} = 360 - x$	
A <mark>semicircle</mark> is an arc with endpoints that lie on a diameter.	The measure of a semicircle is 180. $\widehat{mADB} = 180$	

Real-WorldCareer

Historical Researcher Research in museums includes authentication, verification, and description of artifacts. Employment as a historical researcher requires a minimum of a bachelor's degree in history. Refer to Exercises 42-43.

\overline{GJ} is a dia	meter of $\odot K$. Identify each arc as a <i>major arc</i> ,
minor arc,	or <i>semicircle</i> . Then find its measure.
a. mGH	
\widehat{GH} is a	minor arc, so $m\widehat{GH} = m\angle GKH$ or 122.

Example 2 Classify Arcs and Find Arc Measures

b. \widehat{mGLH}

c. $m\widehat{GLI}$

 \widehat{GLH} is a major arc that shares the same endpoints as minor arc \widehat{GH} .

 $\widehat{mGHL} = 360 - \widehat{mGH}$

= 360 - 122 or 238

GuidedPractice

 \overline{PM} is a diameter of $\odot R$. Identify each arc as a *major arc*, minor arc, or semicircle. Then find its measure.

```
2A. \widehat{MQ}
                    2B. MNP
                                                    2C. \widehat{MNQ}
```

Congruent arcs are arcs in the same or congruent circles that have the same measure.

Theorem 10.1		
Words	In the same circle or in congruent circles, two minor arcs are congruent if and only if their central angles are congruent.	FG
Example	If $\angle 1 \cong \angle 2$, then $\widehat{FG} \cong \widehat{HJ}$. If $\widehat{FG} \cong \widehat{HJ}$, then $\angle 1 \cong \angle 2$.	

imagebroker/Alamy

You will prove Theorem 10.1 in Exercise 52.

PT

 \widehat{GLI} is a semicircle, so $m\widehat{GLI} = 180$.

connectED.mcgraw-hill.com

Real-World Example 3 Find Arc Measures in Circle Graphs

В

Track & Field

18%

С

SPORTS Refer to the circle graph. Find **Female Participation in Sports** each measure. Α a. $m\widehat{CD}$ F Other \widehat{CD} is a minor arc. $\widehat{mCD} = m \angle CSD$ 14% Basketball 20% $\angle CSD$ represents 18% of the whole, Soccer 14% or 18% of the circle. $m \angle CSD = 0.18(360)$ Find 18% of 360. Ε Softball = 64.816% Simplify. Volleyball 18% **b.** \widehat{mBC} D The percents for volleyball and track and field are equal, so the central angles are congruent and the corresponding arcs are congruent. $\widehat{mBC} = \widehat{mCD} = 64.8$

GuidedPractice

3A. $m \widehat{EF}$

3B. $m\widehat{FA}$

Adjacent arcs are arcs in a circle that have exactly one point in common. In $\bigcirc M$, \overrightarrow{HI} and \overrightarrow{IK} are adjacent arcs. As with adjacent angles, you can add the measures of adjacent arcs.

Example 4 Use Arc Addition to Find Measures of Arcs

Postulate 10.1 Arc Addition Postulate			
Words	The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.	Y Y	
Example	$m\widehat{XYZ} = m\widehat{XY} + m\widehat{YZ}$	x	

Math HistoryLink

Euclid (c. 325-265 B.c.) The 13 books of Euclid's *Elements* are influential works of science. In them, geometry and other branches of mathematics are logically developed. Book 3 of Elements is devoted to circles, arcs, and angles.

GuidedPractice

4A. *mCE*

a. $m\widehat{AED}$

b. $m\widehat{ADB}$

4B. *mABD*

PT

WatchOut!

Arc Length The length of an arc is given in linear units, such as centimeters. The measure of an arc is given in degrees. **Arc Length** Arc length is the distance between the endpoints along an arc measured in linear units. Since an arc is a portion of a circle, its length is a fraction of the circumference.

StudyTip

Alternate Method The arc lengths in Examples 5a, 5b, and 5c could also have been calculated using the arc length proportion $\frac{\ell}{2\pi r} = \frac{x}{360}$.

Notice that \widehat{ZY} has the same measure, 75, in both Examples 5a and 5c. The arc lengths, however, are different. This is because they are in circles that have different radii.

GuidedPractice

Find the length of \widehat{AB} . Round to the nearest hundredth.

connectED.mcgraw-hill.com

709

Example 2 \overline{AD} and \overline{CG} are diameters of $\bigcirc B$. Identify each arc as a *major arc, minor arc, or semicircle*. Then find its measure.

16. <i>m</i> CD	17. <i>mAC</i>
19. <i>mCGD</i>	20. <i>mGCF</i>
22. $m\widehat{AG}$	23. mACF

Example 3

- **24. SHOPPING** The graph shows the results of a survey in which teens were asked where the best place was to shop for clothes.
 - **a.** What would be the arc measures associated with the mall and vintage stores categories?
 - **b.** Describe the kinds of arcs associated with the category "Mall" and the category "None of these."
 - **c.** Are there any congruent arcs in this graph? Explain.
- **25. MODELING** The table shows the results of a survey in which Americans were asked how long food could be on the floor and still be safe to eat.
 - **a.** If you were to construct a circle graph of this information, what would be the arc measures associated with the first two categories?
 - **b.** Describe the kind of arcs associated with the first category and the last category.
 - **c.** Are there any congruent arcs in this graph? Explain.

Examples 2, 4 ENTERTAINMENT Use the Ferris wheel shown to

find each measure.

26.	mFG	27.	mĴĤ
28.	mJKF	29.	$m\widehat{JFH}$
30.	mGHF	31.	mGHK
32.	$m\widehat{HK}$	33.	mĴKG
34.	mKFH	35.	$m\widehat{HGF}$

Example 5 Use $\bigcirc P$ to find the length of each arc. Round to the nearest hundredth.

- **36.** \widehat{RS} , if the radius is 2 inches
- (37) \widehat{QT} , if the diameter is 9 centimeters
- **38.** \widehat{QR} , if PS = 4 millimeters
- **39.** \widehat{RS} , if RT = 15 inches
- **40.** \widehat{QRS} , if RT = 11 feet
- **41.** \widehat{RTS} , if PQ = 3 meters

С

Dropped Food		
Do you eat food dropped on the floor?		
Not safe to eat	78%	
Three-second rule*	10%	
Five-second rule*	8%	
Ten-second rule*	4%	

Source: American Diabetic Association * The length of time the food is on the floor.

HISTORY The figure shows the stars in the Betsy Ross flag referenced at the beginning of the lesson.

- **42.** What is the measure of central angle *A*? Explain how you determined your answer.
- **43.** If the diameter of the circle were doubled, what would be the effect on the arc length from the center of one star *B* to the next star *C*?
- **44. FARMS** The *Pizza Farm* in Madera, California, is a circle divided into eight equal slices, as shown at the right. Each "slice" is used for growing or grazing pizza ingredients.
 - **a.** What is the total arc measure of the slices containing olives, tomatoes, and peppers?
 - **b.** The circle is 125 feet in diameter. What is the arc length of one slice? Round to the nearest hundredth.

REASONING Find each measure. Round each linear measure to the nearest hundredth and each arc measure to the nearest degree.

45. circumference of $\odot S$ **46.** $m\widehat{CD}$

47. radius of ⊙*K*

ALGEBRA In $\odot C$, $m \angle HCG = 2x$ and $m \angle HCD = 6x + 28$. Find each measure.

49. *mHD*

48. mEF

MLF

51 RIDES A pirate ship ride follows a semicircular path, as shown in the diagram.

50. *mHGF*

a. What is $m\widehat{AB}$?

- **b.** If CD = 62 feet, what is the length of \widehat{AB} ? Round to the nearest hundredth.
- **52. PROOF** Write a two-column proof of Theorem 10.1.

Given: $\angle BAC \cong \angle DAE$ **Prove:** $\widehat{BC} \cong \widehat{DE}$

COORDINATE GEOMETRY In the graph, point *M* is located at the origin. Find each measure in $\bigcirc M$. Round each linear measure to the nearest hundredth and each arc measure to the nearest tenth degree.

a. $m\widehat{JL}$ **b.** $m\widehat{KL}$ **c.** $m\widehat{JK}$

d. length of \widehat{JL} **e.** length of \widehat{JK}

- **54. ARC LENGTH AND RADIAN MEASURE** In this problem, you will use concentric circles to show that the length of the arc intercepted by a central angle of a circle is dependent on the circle's radius.
 - **a.** Compare the measures of arc ℓ_1 and arc ℓ_2 . Then compare the lengths of arc ℓ_1 and arc ℓ_2 . What do these two comparisons suggest?
 - **b.** Use similarity transformations (dilations) to explain why the length of an arc ℓ intercepted by a central angle of a circle is proportional to the circle's radius *r*. That is, explain why we can say that for this diagram, $\frac{\ell_1}{r_1} = \frac{\ell_2}{r_2}$.
 - **c.** Write expressions for the lengths of arcs ℓ_1 and ℓ_2 . Use these expressions to identify the constant of proportionality k in $\ell = kr$.
 - **d.** The expression that you wrote for *k* in part **c** gives the *radian measure* of an angle. Use it to find the radian measure of an angle measuring 90°.

H.O.T. Problems Use Higher-Order Thinking Skills

55. ERROR ANALYSIS Brody says that \widehat{WX} and \widehat{YZ} are congruent since their central angles have the same measure. Selena says they are not congruent. Is either of them correct? Explain your reasoning.

ARGUMENTS Determine whether each statement is *sometimes, always,* or *never* true. Explain your reasoning.

- **56.** The measure of a minor arc is less than 180.
- **57.** If a central angle is obtuse, its corresponding arc is a major arc.
- **58.** The sum of the measures of adjacent arcs of a circle depends on the measure of the radius.
- **59. CHALLENGE** The measures of $\hat{L}M$, $\hat{M}N$, and $\hat{N}L$ are in the ratio 5:3:4. Find the measure of each arc.

- **60. OPEN ENDED** Draw a circle and locate three points on the circle. Estimate the measures of the three nonoverlapping arcs that are formed. Then use a protractor to find the measure of each arc. Label your circle with the arc measures.
- **61. CHALLENGE** The time shown on an analog clock is 8:10. What is the measure of the angle formed by the hands of the clock?
- **62.** WRITING IN MATH Describe the three different types of arcs in a circle and the method for finding the measure of each one.

Standardized Test Practice

65. ALGEBRA A rectangle's width is represented by *x* and its length by *y*. Which expression best represents the area of the rectangle if the length and width are tripled?

F	3xy	Н	9xy
G	$3(xy)^2$	J	$(xy)^{3}$

66. SAT/ACT What is the area of the shaded region if r = 4?

Spiral Review

- Refer to $\odot J$. (Lesson 10-1)
- **67.** Name the center of the circle.
- **68.** Identify a chord that is also a diameter.
- **69.** If *LN* = 12.4, what is *JM*?

Graph the image of each polygon with the given vertices after a dilation centered at the origin with the given scale factor. (Lesson 9-6)

70. *X*(-1, 2), *Y*(2, 1), *Z*(-1, -2); *r* = 3

71. A(-4, 4), B(4, 4), C(4, -4), D(-4, -4); r = 0.25

72. BASEBALL The diagram shows some dimensions of Comiskey Park in Chicago, Illinois. \overline{BD} is a segment from home plate to dead center field, and \overline{AE} is a segment from the left field foul pole to the right field foul pole. If the center fielder is standing at *C*, how far is he from home plate? (Lesson 8-3)

Find *x*, *y*, and *z*. (Lesson 8-1)

Skills Review

Find *x*.

75. $24^2 + x^2 = 26^2$

