Arcs and Chords

- You used the relationships between arcs and angles to find measures.

Recognize and use relationships between arcs and chords.

Recognize and use relationships between arcs, chords, and diameters.

Why?

Embroidery hoops are used in sewing, quilting, and crossstitching, as well as for embroidering. The endpoints of the snowflake shown are both the endpoints of a chord and the endpoints of an arc.

Common Core State Standards

Content Standards

G.C. 2 Identify and describe relationships among inscribed angles, radii, and chords.
G.MG. 3 Apply geometric methods to solve problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios). \star

Mathematical Practices

4 Model with mathematics.
3 Construct viable arguments and critique the reasoning of others.

Arcs and Chords A chord is a segment with endpoints on a circle. If a chord is not a diameter, then its endpoints divide the circle into a major and a minor arc.

Theorem 10.2

Words In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.
Example $\quad \overparen{F G} \cong \overparen{H J}$ if and only if $\overline{F G} \cong \overline{H J}$.

Proof Theorem 10.2 (part 1)

Given: $\odot P ; \overparen{Q R} \cong \overparen{S T}$
Prove: $\overline{Q R} \cong \overline{S T}$
Proof:

Statements

Reasons

1. $\odot P, \overparen{Q R} \cong \overparen{S T}$
2. Given
3. $\angle Q P R \cong \angle S P T$
4. $\overline{Q P} \cong \overline{P R} \cong \overline{S P} \cong \overline{P T}$
5. If arcs are \cong, their corresponding central \S are \cong.
6. All radii of a circle are \cong.
7. $\triangle P Q R \cong \triangle P S T$
8. $\overline{Q R} \cong \overline{S T}$
9. SAS
10. СРСТС

You will prove part 2 of Theorem 10.2 in Exercise 25.

Real-World Example 1 Use Congruent Chords to Find Arc Measure

CRAFTS In the embroidery hoop, $\overline{A B} \cong \overline{C D}$ and $m \overparen{A B}=60$. Find $m \overparen{C D}$.
$\overline{A B}$ and $\overline{C D}$ are congruent chords, so the corresponding arcs $\overparen{A B}$ and $\overparen{C D}$ are congruent. $m \overparen{A B}=m \overparen{C D}=60$

GuidedPractice

1. If $m \overparen{A B}=78$ in the embroidery hoop, find $m \overparen{C D}$.

ALGEBRA In the figures, $\odot J \cong \odot K$ and $\overparen{M N} \cong \overparen{P Q}$. Find $P Q$.
$\overparen{M N}$ and $\overparen{P Q}$ are congruent arcs in congruent circles, so the corresponding chords $\overline{M N}$ and $\overline{P Q}$ are congruent.

$$
\begin{aligned}
M N & =P Q & & \text { Definition of congruent segments } \\
2 x+1 & =3 x-7 & & \text { Substitution } \\
8 & =x & & \text { Simplify. }
\end{aligned}
$$

StudyTip

Arc Bisectors In the figure below, $\overline{F H}$ is an arc bisector of $\overparen{J G}$.

Bisecting Arcs and Chords If a line, segment, or ray divides an arc into two congruent arcs, then it bisects the arc.

Theorems

10.3 If a diameter (or radius) of a circle is perpendicular to a chord, then it bisects the chord and its arc.
Example If diameter $\overline{A B}$ is perpendicular to chord $\overline{X Y}$, then $\overline{X Z} \cong \overline{Z Y}$ and $\overparen{X B} \cong \overparen{B Y}$.

10.4 The perpendicular bisector of a chord is a diameter (or radius) of the circle.

Example If $\overline{A B}$ is a perpendicular bisector of chord $\overline{X Y}$, then $\overline{A B}$ is a diameter of $\odot C$.

You will prove Theorems 10.3 and 10.4 in Exercises 26 and 28, respectively.

Exemple 3 Use a Radius Perpendicular to a Chord

In $\odot S, m \overparen{P Q R}=98$. Find $m \overparen{P Q}$.
Radius $\overline{S Q}$ is perpendicular to chord $\overline{P R}$. So by
Theorem 10.3, $\overline{S Q}$ bisects $\overparen{P Q R}$. Therefore, $m \overparen{P Q}=m \overparen{Q R}$.
By substitution, $m \overparen{P Q}=\frac{98}{2}$ or 49 .

GuidedPractice

3. In $\odot S$, find $P R$.

StudyTip

Drawing Segments You can add any known information to a figure to help you solve the problem. In Example 4, radius $\overline{J K}$ was drawn.

STAINED GLASS In the stained glass window, diameter $\overline{G H}$ is 30 inches long and chord $\overline{K M}$ is 22 inches long. Find JL.
Step 1 Draw radius $\overline{J K}$.

This forms right $\triangle J K L$.
Step 2 Find $J K$ and $K L$.
Since $G H=30$ inches, $J H=15$ inches. All radii of a circle are congruent, so $J K=15$ inches.
Since diameter $\overline{\mathrm{GH}}$ is perpendicular to $\overline{K M}, \overline{\mathrm{GH}}$ bisects chord $\overline{K M}$ by Theorem 10.3. So, $K L=\frac{1}{2}(22)$ or 11 inches.

Step 3 Use the Pythagorean Theorem to find JL.

$$
\begin{aligned}
K L^{2}+J L^{2} & =J K^{2} & & \text { Pythagorean Theorem } \\
11^{2}+J L^{2} & =15^{2} & & K L=11 \text { and } J K=15 \\
121+J L^{2} & =225 & & \text { Simplify. } \\
J L^{2} & =104 & & \text { Subtract 121 from each side. } \\
J L & =\sqrt{104} & & \text { Take the positive square root of each side. }
\end{aligned}
$$

So, JL is $\sqrt{104}$ or about 10.20 inches long.

GuidedPractice

4. In $\odot R$, find $T V$. Round to the nearest hundredth.

In addition to Theorem 10.2, you can use the following theorem to determine whether two chords in a circle are congruent.

Theorem 10.5

Words In the same circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center. $\overline{F G} \cong \overline{J H}$ if and only if $L X=L Y$.

Example 5 Chords Equidistant from Center

ALGEBRA In $\odot A, W X=X Y=22$. Find $A B$.
Since chords $\overline{W X}$ and $\overline{X Y}$ are congruent, they are equidistant from A. So, $A B=A C$.

$$
\begin{aligned}
A B & =A C & & \\
5 x & =3 x+4 & & \text { Substitution } \\
x & =2 & & \text { Simplify. }
\end{aligned}
$$

So, $A B=5(2)$ or 10 .

GuidedPractice

5. In $\odot H, P Q=3 x-4$ and $R S=14$. Find x.

You can use Theorem 10.5 to find the point equidistant from three noncollinear points.

Construction Circle Through Three Noncollinear Points

Step 1

Draw three noncollinear points A, B, and C. Then draw segments $\overline{A B}$ and $\overline{B C}$.

Step 2

Construct the perpendicular bisectors ℓ and m of $\overline{A B}$ and $\overline{B C}$. Label the point of intersection D.

Step 3

By Theorem 10.4, lines ℓ and m contain diameters of $\odot D$. With the compass at point D, draw a circle through points A, B, and C.

Bheck Your Understanding
Examples 1-2 ALGEBRA Find the value of x.
(1)

2.

3.

Examples $3-4$ In $\odot P, J K=10$ and $m \overparen{L K}=134$. Find each measure.
Round to the nearest hundredth.
4. $m \overparen{J L}$
5. $P Q$

Practice and Problem Solving

Examples 1-2 ALGEBRA Find the value of x.
7.

8.

9.

10.

11.

12.

(13) $\odot C \cong \odot D$

14. $\odot P \cong \odot Q$

15. CCSS MODELING Angie is in a jewelry making class at her local arts center. She wants to make a pair of triangular earrings from a metal circle. She knows that $\overparen{A C}$ is 115°. If she wants to cut two equal parts off so that $\overparen{A B}=\overparen{B C}$, what is x ?

Examples $3-4$ In $\odot A$, the radius is 14 and $C D=22$. Find each measure. Round to the nearest hundredth, if necessary.
16. $C E$
17. $E B$

In $\odot H$, the diameter is $18, L M=12$, and $m \overparen{L M}=84$. Find each measure. Round to the nearest hundredth, if necessary.
18. $m \overparen{L K}$
19. $H P$

20. SNOWBOARDING The snowboarding rail shown is an arc of a circle in which $\overline{B D}$ is part of the diameter. If $\overparen{A B C}$ is about 32% of a complete circle, what is $m \overparen{A B}$?

(21) ROADS The curved road at the right is part of $\odot C$, which has a radius of 88 feet. What is $A B$? Round to the nearest tenth.

Example 5

22. ALGEBRA In $\odot F, \overline{A B} \cong \overline{B C}$, $D F=3 x-7$, and $F E=x+9$. What is x ?

PROOF Write a two-column proof.
24. Given: $\odot P, \overline{K M} \perp \overline{J P}$

Prove: $\overline{J P}$ bisects $\overline{K M}$ and $\overparen{K M}$.
23. ALGEBRA In $\odot S, L M=16$ and $P N=4 x$. What is x ?

PROOF Write the specified type of proof.

25. paragraph proof of

Theorem 10.2, part 2
Given: $\odot P, \overline{Q R} \cong \overline{S T}$
Prove: $\overparen{Q R} \cong \overparen{S T}$

26. two-column proof of Theorem 10.3
Given: $\odot C, \overline{A B} \perp \overline{X Y}$
Prove: $\overline{X Z} \cong \overline{Y Z}, \overparen{X B} \cong \overparen{Y B}$

27. DESIGN Roberto is designing a logo for a friend's coffee shop according to the design at the right, where each chord is equal in length. What is the measure of each arc and the length of each chord?

28.

ARGUMENTS Write a two-column proof of the indicated part of Theorem 10.5.
29. In a circle, if two chords are equidistant from the center, then they are congruent.
30. In a circle, if two chords are congruent, then they are equidistant from the center.

ALGEBRA Find the value of x.
(31) $\overline{A B} \cong \overline{D F}$
32. $\overline{G H} \cong \overline{K J}$
33. $\widehat{W T Y} \cong \overparen{T W Y}$

34. ADVERTISING A bookstore clerk wants to set up a display of new books. If there are three entrances into the store as shown in the figure at the right, where should the display be to get maximum exposure?

H.O.T. Problems Use Higher-order Thinking skills

35. CHALLENGE The common chord $\overline{A B}$ between $\odot P$ and $\odot Q$ is perpendicular to the segment connecting the centers of the circles. If $A B=10$, what is the length of $\overline{P Q}$? Explain your reasoning.

36. REASONING In a circle, $\overline{A B}$ is a diameter and $\overline{H G}$ is a chord that intersects $\overline{A B}$ at point X. Is it sometimes, always, or never true that $H X=G X$? Explain.
37. CHALLENGE Use a compass to draw a circle with chord $\overline{A B}$. Refer to this construction for the following problem.

Step 1 Construct $\overline{C D}$, the perpendicular bisector of $\overline{A B}$.

Step 2 Construct $\overline{F G}$, the perpendicular bisector of $\overline{C D}$. Label the point of intersection O.

a. Use an indirect proof to show that $\overline{C D}$ passes through the center of the circle by assuming that the center of the circle is not on $\overline{C D}$.
b. Prove that O is the center of the circle.
38. OPEN ENDED Construct a circle and draw a chord. Measure the chord and the distance that the chord is from the center. Find the length of the radius.
39. WRITING IN MATH If the measure of an arc in a circle is tripled, will the chord of the new arc be three times as long as the chord of the original arc? Explain your reasoning.
40. If $C W=W F$ and $E D=30$, what is $D F$?

A 60
B 45
C 30

D 15
41. ALGEBRA Write the ratio of the area of the circle to the area of the square in simplest form.

F $\frac{\pi}{4}$
H $\frac{3 \pi}{4}$
G $\frac{\pi}{2}$
J π
42. SHORT RESPONSE The pipe shown is divided into five equal sections. How long is the pipe in feet (ft) and inches (in.)?

43. SAT/ACT Point B is the center of a circle, tangent to the y-axis, and the coordinates of Point B are $(3,1)$. What is the area of the circle?

A π units 2
D 6π units 2
B 3π units 2
E 9π units 2
C 4π units 2

Spiral Review

Find \boldsymbol{x}. (Lesson 10-2)
44.

45.

46.

47. CRAFTS Ruby created a pattern to sew flowers onto a quilt by first drawing a regular pentagon that was 3.5 inches long on each side. Then she added a semicircle onto each side of the pentagon to create the appearance of five petals. How many inches of gold trim does she need to edge 10 flowers? Round to the nearest inch. (Lesson 10-1)

Determine whether each set of numbers can be the measures of the sides of a triangle. If so, classify the triangle as acute, obtuse, or right. Justify your answer. (Lesson 8-2)
48. $8,15,17$
49. 20, 21, 31
50. $10,16,18$

Skills Review

ALGEBRA Quadrilateral $W X Z Y$ is a rhombus. Find each value or measure.
51. If $m \angle 3=y^{2}-31$, find y.
52. If $m \angle X Z Y=56$, find $m \angle Y W Z$.

