Inscribed Angles

*Ф*Ъс і

NewVocabulary inscribed angle intercepted arc

Common Core State Standards

Content Standards G.C.2 Identify and describe relationships among inscribed angles, radii, and chords.

G.C.3 Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle.

Mathematical Practices

- 7 Look for and make use of structure.
- 3 Construct viable arguments and critique the reasoning of others.

Inscribed Angles Notice that the angle formed by each streamer appears to be congruent, no matter where point *P* is placed along the arch. An **inscribed angle** has a vertex on a circle and sides that contain chords of the circle. In $\bigcirc C$, $\angle QRS$ is an inscribed angle.

connectED.mcgraw-hill.com

An **intercepted arc** has endpoints on the sides of an inscribed angle and lies in the interior of the inscribed angle. In $\bigcirc C$, minor arc \widehat{QS} is intercepted by $\angle QRS$.

There are three ways that an angle can be inscribed in a circle.

In Case 1, the side of the angle is a diameter of the circle.

For each of these cases, the following theorem holds true.

Theorem 10.6 Inscribed Angle TheoremWordsIf an angle is inscribed in a circle, then the measure
of the angle equals one half the measure of its
intercepted arc.Example $m \angle 1 = \frac{1}{2}m\widehat{AB}$ and $\widehat{mAB} = 2m \angle 1$

You will prove Cases 2 and 3 of the Inscribed Angle Theorem in Exercises 37 and 38.

VocabularyLink

Inscribed

Everyday Use: written on or in a surface, such as inscribing the inside of a ring with an inscription

Math Use: touching only the sides (or interior) of another figure

Proof Inscribed Angle Theorem (Case 1)					
Given: $\angle B$ is inscribed in $\bigcirc P$. Prove: $m \angle B = \frac{1}{2}m\widehat{AC}$		B P C			
Proof: A					
Statements		Re	Reasons		
1.	Draw an auxiliary radius \overline{PC} .	1.	Two points determine a line.		
2.	$\overline{PB} \cong \overline{PC}$	2.	All radii of a circle are \cong .		
3.	$\triangle PBC$ is isosceles.	3.	Definition of isosceles triangle		
4.	$m \angle B = m \angle C$	4.	Isosceles Triangle Theorem		
5.	$m \angle APC = m \angle B + m \angle C$	5.	Exterior Angle Theorem		
6.	$m \angle APC = 2m \angle B$	6.	Substitution (Steps 4, 5)		
7.	$\widehat{mAC} = m \angle APC$	7.	Definition of arc measure		
8.	$m\widehat{AC} = 2m\angle B$	8.	Substitution (Steps 6, 7)		
9.	$2m \angle B = m\widehat{AC}$	9.	Symmetric Property of Equality		
10.	$m \angle B = \frac{1}{2} m \widehat{AC}$	10.	Division Property of Equality		

Two inscribed angles that intercept the same arc of a circle are related.

Theoren	10.7	
Words	If two inscribed angles of a circle intercept the same arc or congruent arcs, then the angles are congruent.	B D
Example	$\angle B$ and $\angle C$ both intercept \widehat{AD} . So, $\angle B \cong \angle C$.	A

StudyTip

Inscribed Polygons Remember that for a polygon to be an inscribed polygon, *all* of its vertices must lie on the circle.

Example 2 Use Inscribed Angles to Find Measures

ALGEBRA Find $m \angle T$.

 $\angle T \cong \angle U \qquad \angle T \text{ and } \angle U \text{ both intercept } \widehat{SV}.$ $m\angle T = m\angle U \qquad \text{Definition of congruent angles}$ $3x - 5 = 2x + 15 \qquad \text{Substitution}$ $x = 20 \qquad \text{Simplify.}$

So, $m \angle T = 3(20) - 5$ or 55.

GuidedPractice

2. If $m \angle S = 3x$ and $m \angle V = (x + 16)$, find $m \angle S$.

2 Angles of Inscribed Polygons Triangles and quadrilaterals that are inscribed in circles have special properties.

Theorem 10.8					
Words	An inscribed angle of a triangle intercepts a diameter or semicircle if and only if the angle is a right angle.	G			
Example	If \overrightarrow{FJH} is a semicircle, then $m \angle G = 90$. If $m \angle G = 90$, then \overrightarrow{FJH} is a semicircle and \overrightarrow{FH} is a diameter.	F			

You will prove Theorem 10.8 in Exercise 40.

U

Т

 $(3x - 5)^{\circ}$

 $(2x + 15)^{\circ}$

While many different types of triangles, including right triangles, can be inscribed in a circle, only certain quadrilaterals can be inscribed in a circle.

You will prove Theorem 10.9 in Exercise 31.

 32. mNQ
 33 m∠RLQ

 34. m∠LRQ
 35. m∠LSR

36. ART Four different string art star patterns are shown. If all of the inscribed angles of each star shown are congruent, find the measure of each inscribed angle.

38. Case 3

PROOF Write a two-column proof for each case of Theorem 10.6.

37. Case 2

Given: *P* lies inside $\angle ABC$. \overline{BD} is a diameter. **Prove:** $m \angle ABC = \frac{1}{2}m\widehat{AC}$

Given: *P* lies outside $\angle ABC$. \overline{BD} is a diameter. **Prove:** $m\angle ABC = \frac{1}{2}m\widehat{AC}$

PROOF Write the specified proof for each theorem.

(39) Theorem 10.7, two-column proof

40. Theorem 10.8, paragraph proof

- **41. 5 MULTIPLE REPRESENTATIONS** In this problem, you will investigate the relationship between the arcs of a circle that are cut by two parallel chords.
 - **a. Geometric** Use a compass to draw a circle with parallel chords \overline{AB} and \overline{CD} . Connect points *A* and *D* by drawing segment \overline{AD} .
 - **b.** Numerical Use a protractor to find $m \angle A$ and $m \angle D$. Then determine $m \widehat{AC}$ and $m \widehat{BD}$. What is true about these arcs? Explain.
 - **c. Verbal** Draw another circle and repeat parts **a** and **b**. Make a conjecture about arcs of a circle that are cut by two parallel chords.
 - **d. Analytical** Use your conjecture to find \widehat{mPR} and \widehat{mQS} in the figure at the right. Verify by using inscribed angles to find the measures of the arcs.

connectED.mcgraw-hill.com

H.O.T. Problems Use Higher-Order Thinking Skills

ARGUMENTS Determine whether the quadrilateral can *always*, *sometimes*, or *never* be inscribed in a circle. Explain your reasoning.

- **42.** square **43.** rectangle **44.** parallelogram **45.** rhombus **46.** kite
- **47. CHALLENGE** A square is inscribed in a circle. What is the ratio of the area of the circle to the area of the square?
- **48.** WRITING IN MATH A 45°-45°-90° right triangle is inscribed in a circle. If the radius of the circle is given, explain how to find the lengths of the right triangle's legs.
- **49. OPEN ENDED** Find and sketch a real-world logo with an inscribed polygon.
- **50.** WRITING IN MATH Compare and contrast inscribed angles and central angles of a circle. If they intercept the same arc, how are they related?

Standardized Test Practice

51. In the circle below, mAC = 160 and $m\angle BEC = 38$. What is $m\angle AEB$?

- A
 42
 C
 80

 B
 61
 D
 84
- **52.** ALGEBRA Simplify $4(3x - 2)(2x + 4) + 3x^2 + 5x - 6.$ F $9x^2 + 3x - 14$ H $27x^2 + 37x - 38$ G $9x^2 + 13x - 14$ J $27x^2 + 27x - 26$

53. SHORT RESPONSE In the circle below, \overline{AB} is a diameter, AC = 8 inches, and BC = 15 inches. Find the diameter, the radius, and the circumference of the circle.

- **54. SAT/ACT** The sum of three consecutive integers is -48. What is the least of the three integers?
 - A
 -15
 D
 -18

 B
 -16
 E
 -19

 C
 -17

Spiral Review

In $\odot M$, $FL = 24$, $HJ = 48$, and $m\widehat{HP} =$	65. Find each measure. (Lesson 10-3)	K
55. <i>FG</i>	56. $m\widehat{PJ}$	E L G
57. NJ	58. $m\widehat{H}\widehat{J}$	H M N
Find x. (Lesson 10-2)		PJ

62. PHOTOGRAPHY In one of the first cameras invented, light entered an opening in the front. An image was reflected in the back of the camera, upside down, forming similar triangles. Suppose the image of the person on the back of the camera is 12 inches, the distance from the opening to the person is 7 feet, and the camera itself is 15 inches long. How tall is the person being photographed? (Lesson 7-3)

Skills Review

ALGEBRA Suppose *B* is the midpoint of \overline{AC} . Use the given information to find the missing measure.

63. AB = 4x - 5, BC = 11 + 2x, AC = ?
65. BC = 6 - 4m, AC = 8, m = ?

64. AB = 6y − 14, BC = 10 − 2y, AC = ?
66. AB = 10s + 2, AC = 40, s = ?