- You found measures of segments formed by tangents to a circle.

NewVocabulary secant

Common Core State Standards

Content Standards

Reinforcement of G.C. 4
Construct a tangent line from a point outside a given circle to the circle.

Mathematical Practices

3 Construct viable arguments and critique the reasoning of others.
1 Make sense of problems and persevere in solving them.

Find measures of angles formed by lines intersecting on or inside a circle. Find measures of angles formed by lines intersecting outside the circle.

Why?

An average person's field of vision is about 180°. Most cameras have a much narrower viewing angle of between 20° and 50°. This viewing angle determines how much of a curved object a camera can capture on film.

1Intersections On or Inside a Circle A secant is a line that intersects a circle in exactly two points. Lines j and \mathcal{K} are secants of $\odot C$.

When two secants intersect inside a circle, the angles formed are related to the arcs they intercept.

Theorem 10.12

Words If two secants or chords intersect in the interior of a circle, then the measure of an angle formed is one half the sum of the measure of the arcs intercepted by the angle and its vertical angle.

Example $m \angle 1=\frac{1}{2}(m \overparen{A B}+m \overparen{C D})$ and $m \angle 2=\frac{1}{2}(m \overparen{D A}+m \overparen{B C})$

Proof

Given: $\overleftrightarrow{H K}$ and $\overleftrightarrow{J L}$ intersect at M.
Prove: $m \angle 1=\frac{1}{2}(m \overparen{J H}+m \overparen{L K})$
Proof:

Statements

1. $\overleftrightarrow{H K}$ and $\overleftrightarrow{J L}$ intersect at M.
2. $m \angle 1=m \angle M J K+m \angle M K J$
3. $m \angle M J K=\frac{1}{2} m \angle \overparen{L K}, m \angle M K J=\frac{1}{2} m \angle \overparen{J H}$
4. $m \angle 1=\frac{1}{2} m \angle \overparen{L K}+\frac{1}{2} m \angle \overparen{J H}$
5. $m \angle 1=\frac{1}{2}(m \overparen{J H}+m \overparen{L K})$

Reasons

1. Given
2. Exterior Angle Theorem
3. The measure of an inscribed \angle equals half the measure of the intercepted arc.
4. Substitution
5. Distributive Property

Find x.

a.

b.

$$
\begin{aligned}
m \angle T V U & =\frac{1}{2}(m \overparen{R S}+m \overparen{T U}) & & \text { Theorem } 10.12 \\
x & =\frac{1}{2}(84+130) & & \text { Substitution } \\
& =\frac{1}{2}(214) \text { or } 107 & & \text { Simplify. }
\end{aligned}
$$

Step 1 Find $m \angle A E B$.

$$
\begin{aligned}
m \angle A E B & =\frac{1}{2}(m \overparen{A B}+m \overparen{C D}) & & \text { Theorem } 10.12 \\
& =\frac{1}{2}(143+75) & & \text { Substitution } \\
& =\frac{1}{2}(218) \text { or } 109 & & \text { Simplify. }
\end{aligned}
$$

Step 2 Find x, the measure of $\angle D E B$.
$\angle A E B$ and $\angle D E B$ are supplementary angles.
So, $x=180-109$ or 71 .
c.

$$
\begin{aligned}
m \angle G L H & =\frac{1}{2}(m \overparen{G H}+m \overparen{K J}) & & \text { Theorem } 10.12 \\
110 & =\frac{1}{2}(x+97) & & \text { Substitution } \\
220 & =(x+97) & & \text { Multiply each side by } 2 . \\
123 & =x & & \text { Subtract } 97 \text { from each side. }
\end{aligned}
$$

GuidedPractice

1A.

1B.

1C.

Recall that Theorem 10.6 states that the measure of an inscribed angle is half the measure of its intercepted arc. If one of the sides of this angle is tangent to the circle, this relationship still holds true.

Theorem 10.13

Words If a secant and a tangent intersect at the point of tangency, then the measure of each angle formed is one half the measure of its intercepted arc.
Example $\quad m \angle 1=\frac{1}{2} m \overparen{A B}$ and $m \angle 2=\frac{1}{2} m \overparen{A C B}$

Find each measure.
a. $m \angle Q P R$

$$
\begin{aligned}
m \angle Q P R & =\frac{1}{2} m \overparen{P R} & & \text { Theorem } 10.13 \\
& =\frac{1}{2}(\mathbf{1 4 8)} \text { or } 74 & & \text { Substitute and simplify }
\end{aligned}
$$

b. $m \overparen{D E F}$

$$
\begin{aligned}
m \angle C D F & =\frac{1}{2} m \overparen{F D} \\
64 & =\frac{1}{2} m \overparen{F D} \\
128 & =m \overparen{F D}
\end{aligned}
$$

Theorem 10.13
Substitution
Multiply each side by 2.

$$
m \overparen{D E F}=360-m \overparen{F D}=360-128 \text { or } 232
$$

GuidedPractice

2A. Find $m \overparen{L K}$.

2B. Find $m \angle R Q S$ if $m \overparen{Q T S}=238$.

Intersections Outside a Circle Secants and tangents can also meet outside a circle. The measure of the angle formed also involves half of the measures of the arcs they intercept.

Theorem 10.14

Words If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs.

Examples

Two Secants

$$
m \angle A=\frac{1}{2}(m \overparen{D E}-m \overparen{B C})
$$

Secant-Tangent

$$
m \angle A=\frac{1}{2}(m \overparen{D C}-m \overparen{B C})
$$

Two Tangents

$$
m \angle A=\frac{1}{2}(m \overparen{B D C}-m \overparen{B C})
$$

Find each measure.

a. $m \angle L$

$$
\begin{aligned}
m \angle L & =\frac{1}{2}(m \overparen{H J K}-m \overparen{H K}) & & \text { Theorem } 10.14 \\
& =\frac{1}{2}(360-102)-102 & & \text { Substitution } \\
& =\frac{1}{2}(258-102) \text { or } 78 & & \text { Simplify. }
\end{aligned}
$$

b. $m \overparen{C D}$

$$
\begin{aligned}
m \angle A & =\frac{1}{2}(m \overparen{C D}-m \overparen{B C}) & & \text { Theorem } 10.14 \\
56 & =\frac{1}{2}(m \overparen{C D}-95) & & \text { Substitution } \\
112 & =m \overparen{C D}-95 & & \text { Multiply each side by } 2 . \\
207 & =m \overparen{C D} & & \text { Add } 95 \text { to each side. }
\end{aligned}
$$

GuidedPractice

3A. $m \angle S$

3B. $m \overparen{X Z}$

You can apply the properties of intersecting secants to solve real-world problems.

Real-World Example 4 Apply Properties of Intersecting Secants

SCIENCE The diagram shows the path of a light ray as it hits a drop of water. The ray is bent, or refracted, at points A, B, and C. If $m \overparen{A C}=128$ and $m \overparen{X B Y}=84$, what is $m \angle D$?

Real-WorldLink

There is a difference in the index of refraction between the two mediums such as air and glass. The index of refraction N is given by the equation $N=\frac{C}{V}$, where c is the speed of light and V is the velocity of light in that material.
Source: Microscopy Resource Center

$$
\begin{aligned}
m \angle D & =\frac{1}{2}(m \overparen{A C}-m \overparen{X B Y}) & & \text { Theorem } 10 . \\
& =\frac{1}{2}(128-84) & & \text { Substitution } \\
& =\frac{1}{2}(44) \text { or } 22 & & \text { Simplify. }
\end{aligned}
$$

GuidedPractice

4. Find the value of x.

KeyConcept Circle and Angle Relationships
Vertex of Angle

Gheck Your Understanding

Examples 1-2 Find each measure. Assume that segments that appear to be tangent are tangent.

1. $m \angle 1$

2. $m \overparen{T S}$

3. $m \angle 2$

4. $m \overparen{L P}$

7 STUNTS A ramp is attached to the first of several barrels that have been strapped together for a circus motorcycle stunt as shown. What is the measure of the angle the ramp makes with the ground?

Examples 1-2 Find each measure. Assume that segments that appear to be tangent are tangent.
8. $m \angle 3$

(11) $m \overparen{R Q}$

12. $m \angle K$
15. $m \angle D A B$

16. $m \overparen{G J F}$

10. $m \angle J M K$

13. $m \overparen{P M}$

14. $m \angle A B D$

9. $m \angle 4$

17. SPORTS The multi-sport field shown includes a softball field and a soccer field. If $m \widehat{A B C}=200$, find each measure.
a. $m \angle A C E$
b. $m \angle A D C$

Examples 3-4 CCSS STRUCTURE Find each measure.
21. $m \overparen{X Y}$

18. $m \angle A$

19. $m \angle W$

20. $m \overparen{J M}$

22. $m \angle R$

23. $m \overparen{S U}$

24. JEWELRY In the circular necklace shown, A and B are tangent points. If $x=260$, what is y ?
25. SPACE A satellite orbits above Earth's equator. Find x, the measure of the planet's arc, that is visible to the satellite.

ALGEBRA Find the value of x.
26.

28.

29. PHOTOGRAPHY A photographer frames a carousel in his camera shot as shown so that the lines of sight form tangents to the carousel.
a. If the camera's viewing angle is 35°, what is the arc measure of the carousel that appears in the shot?
b. If you want to capture an arc measure of 150° in the photograph, what viewing angle should be used?

ARGUMENTS For each case of Theorem 10.14, write a two-column proof.
30. Gase 1

Given: secants $\overrightarrow{A D}$ and $\overrightarrow{A E}$
Prove: $m \angle A=\frac{1}{2}(m \overparen{D E}-m \overparen{B C})$

31. Gase 2

Given: tangent $\overrightarrow{F M}$ and secant $\overrightarrow{F L}$
Prove: $m \angle F=\frac{1}{2}(m \overparen{L H}-m \overparen{G H})$

32. Gase 3

Given: tangents $\overrightarrow{R S}$ and $\overrightarrow{R V}$
Prove: $m \angle R=\frac{1}{2}(m \overparen{S W T}-m \overparen{S T})$

33. PROOF Write a paragraph proof of Theorem 10.13.
a. Given: $\stackrel{\overleftrightarrow{A B}}{\leftrightarrows}$ is a tangent of $\odot O$. $\overleftrightarrow{A C}$ is a secant of $\odot O$. $\angle C A E$ is acute.
Prove: $m \angle C A E=\frac{1}{2} m \overparen{C A}$

b. Prove that if $\angle C A B$ is obtuse, $m \angle C A B=\frac{1}{2} m \widehat{C D A}$.
34. WALLPAPER In the wallpaper design shown, $\overline{B C}$ is a diameter of $\odot Q$. If $m \angle A=26$ and $m \overparen{C E}=67$, what is $m \overparen{D E}$?
(35) MULTIPLE REPRESENTATIONS In this problem, you will explore the relationship between Theorems 10.12 and 10.6 .
a. Geometric Copy the figure shown. Then draw three successive figures in which the position of point D moves closer to point C, but points A, B, and C remain fixed.

b. Tabular Estimate the measure of $\overparen{C D}$ for each successive circle, recording the measures of $\overparen{A B}$ and $\overparen{C D}$ in a table. Then calculate and record the value of x for each circle.

c. Verbal Describe the relationship between $m \overparen{A B}$ and the value of x as $m \overparen{C D}$ approaches zero. What type of angle does $\angle A E B$ become when $m \overparen{C D}=0$?
d. Analytical Write an algebraic proof to show the relationship between Theorems 10.12 and 10.6 described in part \mathbf{c}.

H.O.T. Problems Use Higher-Order Thinking Skills

36. WRITING IN MATH Explain how to find the measure of an angle formed by a secant and a tangent that intersect outside a circle.
37. CHALLENGE The circles below are concentric. What is x ?

38. REASONING Isosceles $\triangle A B C$ is inscribed in $\odot D$. What can you conclude about $m \overparen{A B}$ and $m \overparen{B C}$? Explain.

39. CCSS ARGUMENTS In the figure, $\overline{J K}$ is a diameter and $\overrightarrow{G H}$ is a tangent.
a. Describe the range of possible values for $m \angle G$. Explain.
b. If $m \angle G=34$, find the measures of minor
 arcs HJ and KH . Explain.
40. OPEN ENDED Draw a circle and two tangents that intersect outside the circle. Use a protractor to measure the angle that is formed. Find the measures of the minor and major arcs formed. Explain your reasoning.
41. WRITING IN MATH A circle is inscribed within $\triangle P Q R$. If $m \angle P=50$ and $m \angle Q=60$, describe how to find the measures of the three minor arcs formed by the points of tangency.
42. What is the value of x if $m \overparen{N R}=62$ and $m \overparen{N P}=108$?

A 23°
C 64°
B 31°
D 128°
43. ALGEBRA Points $A(-4,8)$ and $B(6,2)$ are both on circle C, and $\overline{A B}$ is a diameter. What are the coordinates of C ?
F $(2,10)$
H $(5,-3)$
G $(10,-6)$
J (1, 5)
44. GRIDDED RESPONSE If $m \angle A E D=95$ and $m \overparen{A D}=120$, what is $m \angle B A C$?

45. SAT/ACT If the circumference of the circle below is 16π units, what is the total area of the shaded regions?
A 64π units 2
D 8π units 2
B 32π units 2
E 2π units 2
C 12π units 2

Spiral Roviow

Find x. Assume that segments that appear to be tangent are tangent. (Lesson 10-5)
46.

47.

48.

49. PROOF Write a two-column proof. (Lesson 10-4)

Given: $\widehat{M H T}$ is a semicircle; $\overline{R H} \perp \overline{T M}$.
Prove: $\frac{T R}{R H}=\frac{T H}{H M}$

50. REMODELING The diagram at the right shows the floor plan of Trent's kitchen. Each square on the diagram represents a 3-foot by 3-foot area. While remodeling his kitchen, Trent moved his refrigerator from square A to square B. Describe one possible combination of transformations that could be used to make this move. (Lesson 9-4)

COORDINATE GEOMETRY Find the measure of each angle to the nearest tenth of a
 degree by using the Distance Formula and an inverse trigonometric ratio. (Lesson 8-4)
51. $\angle C$ in triangle $B C D$ with vertices $B(-1,-5), C(-6,-5)$, and $D(-1,2)$
52. $\angle X$ in right triangle $X Y Z$ with vertices $X(2,2), Y(2,-2)$, and $Z(7,-2)$

Skills Review

Solve each equation.
53. $x^{2}+13 x=-36$
54. $x^{2}-6 x=-9$
55. $3 x^{2}+15 x=0$
56. $28=x^{2}+3 x$
57. $x^{2}+12 x+36=0$
58. $x^{2}+5 x=-\frac{25}{4}$

