Proving Angle Relationships

- You identified and used special pairs of angles.

Common Core State Standards

Content Standards
G.CO.9 Prove theorems about lines and angles.

Mathematical Practices

3 Construct viable arguments and critique the reasoning of others.
6 Attend to precision.

Write proofs involving supplementary and complementary angles.

Write proofs involving congruent and right angles.

Why?

Jamal's school is building a walkway that will include bricks with the names of graduates from each class. All of the bricks are rectangular, so when the bricks are laid, all of the angles form linear pairs.

Supplementary and Complementary Angles The Protractor Postulate illustrates the relationship between angle measures and real numbers.

Postulate 2.10 Protractor Postulate

Words Given any angle, the measure can be put into one-to-one correspondence with real numbers between 0 and 180 .
Example If $\overrightarrow{B A}$ is placed along the protractor at 0°, then the measure of $\angle A B C$ corresponds to a positive real number.

In Lesson 2-7, you learned about the Segment Addition Postulate. A similar relationship exists between the measures of angles.

Postulate 2.11 Angle Addition Postulate

D is in the interior of $\angle A B C$ if and only if $m \angle A B D+m \angle D B C=m \angle A B C$.

Example 1 Use the Angle Addition Postulate

Find $m \angle 1$ if $m \angle 2=56$ and $m \angle J K L=145$.

$$
\begin{aligned}
m \angle 1+m \angle 2 & =m \angle J K L \\
m \angle 1+56 & =145 \\
m \angle 1+56-56 & =145-56 \\
m \angle 1 & =89
\end{aligned}
$$

Angle Addition Postulate
$m \angle 2=56 m \angle J K L=145$

Subtraction Property of Equality
Substitution

GuidedPractice

1. If $m \angle 1=23$ and $m \angle A B C=131$, find the measure of $\angle 3$. Justify each step.

StudyTip

Linear Pair Theorem The Supplement Theorem may also be known as the Linear Pair Theorem.

ReviewVocabulary

supplementary angles two angles with measures that add to 180
complementary angles two angles with measures that add to 90
linear pair a pair of adjacent angles with noncommon sides that are opposite rays

The Angle Addition Postulate can be used with other angle relationships to provide additional theorems relating to angles.

Theorems

2.3 Supplement Theorem If two angles form a linear pair, then they are supplementary angles.

Example $m \angle 1+m \angle 2=180$
2.4 Complement Theorem If the noncommon sides of two adjacent angles form a right angle, then the angles are complementary angles.

Example $m \angle 1+m \angle 2=90$

You will prove Theorems 2.3 and 2.4 in Exercises 16 and 17, respectively.

Real-World Example 2 Use Supplement or Complement

SURVEYING Using a transit, a surveyor sights the top of a hill and records an angle measure of about 73°. What is the measure of the angle the top of the hill makes with the horizon? Justify each step.

Understand Make a sketch of the situation. The surveyor is measuring the angle of his line of sight below the vertical. Draw a vertical ray and a horizontal ray from the point where the surveyor is sighting the hill, and label the angles formed. We know that the vertical and horizontal rays form a right angle.

Plan Since $\angle 1$, and $\angle 2$ form a right angle, you can use the Complement Theorem.

Solve $m \angle 1+m \angle 2=90 \quad$ Complement Theorem

$$
\begin{aligned}
73+m \angle 2 & =90 & & m \angle 1=73 \\
73+m \angle 2-73 & =90-73 & & \text { Subtraction Property of Equality } \\
m \angle 2 & =17 & & \text { Substitution }
\end{aligned}
$$

The top of the hill makes a 17° angle with the horizon.
Check Since we know that the sum of the angles should be 90, check your math. The sum of 17 and 73 is 90 .

GuidedPractice

2. $\angle 6$ and $\angle 7$ form linear pair. If $m \angle 6=3 x+32$ and $m \angle 7=5 x+12$, find $x, m \angle 6$, and $m \angle 7$. Justify each step.

Congruent Angles The properties of algebra that applied to the congruence of segments and the equality of their measures also hold true for the congruence of angles and the equality of their measures.

Theorem 2.5 Properties of Angle Congruence

Reflexive Property of Congruence

$\angle 1 \cong \angle 1$

Symmetric Property of Congruence

If $\angle 1 \cong \angle 2$, then $\angle 2 \cong \angle 1$.

Transitive Property of Congruence

If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$.

You will prove the Reflexive and Transitive Properties of Congruence in Exercises 18 and 19, respectively.

Proof Symmetric Property of Congruence

Given: $\angle A \cong \angle B$
Prove: $\angle B \cong \angle A$

Paragraph Proof:
We are given $\angle A \cong \angle B$. By the definition of congruent
 angles, $m \angle A=m \angle B$. Using the Symmetric Property of Equality, $m \angle B=m \angle A$. Thus, $\angle B \cong \angle A$ by the definition of congruent angles.

Algebraic properties can be applied to prove theorems for congruence relationships involving supplementary and complementary angles.

Theorems

2.6 Congruent Supplements Theorem

Angles supplementary to the same angle or to congruent angles are congruent.

Abbreviation \measuredangle suppl. to same \angle or $\cong \measuredangle$ are \cong.
Example If $m \angle 1+m \angle 2=180$ and

$$
m \angle 2+m \angle 3=180, \text { then } \angle 1 \cong \angle 3 .
$$

2.7 Congruent Complements Theorem

Angles complementary to the same angle or to congruent angles are congruent.

$$
\begin{array}{ll}
\text { Abbreviation } \angle \text { compl. to same } \angle \text { or } \cong \angle \text { are } \cong . \\
\text { Example } & \text { If } m \angle 4+m \angle 5=90 \text { and } \\
& m \angle 5+m \angle 6=90, \text { then } \angle 4 \cong \angle 6 .
\end{array}
$$

Proof One Case of the Congruent Supplements Theorem

Given: $\angle 1$ and $\angle 2$ are supplementary. $\angle 2$ and $\angle 3$ are supplementary.
Prove: $\angle 1 \cong \angle 3$
Proof:
Statements

1. $\angle 1$ and $\angle 2$ are supplementary. $\angle 2$ and $\angle 3$ are supplementary.
2. $m \angle 1+m \angle 2=180$; $m \angle 2+m \angle 3=180$
3. $m \angle 1+m \angle 2=m \angle 2+m \angle 3$
4. $m \angle 2=m \angle 2$
5. $m \angle 1=m \angle 3$
6. $\angle 1 \cong \angle 3$

Real-WorldLink

The 100-story John Hancock Building uses huge X-braces in its design. These diagonals are connected to the exterior columns, making it possible for strong wind forces to be carried from the braces to the exterior columns and back.

Source: PBS

ReviewVocabulary

Vertical Angles two nonadjacent angles formed by intersecting lines

Example 3 Proofs Using Congruent Comp. or Suppl. Theorems
Prove that vertical angles 2 and 4 in the photo at the left are congruent.
Given: $\angle 2$ and $\angle 4$ are vertical angles.
Prove: $\angle 2 \cong \angle 4$
Proof:
Statements \quad Reasons

1. $\angle 2$ and $\angle 4$ are vertical angles.
2. $\angle 2$ and $\angle 4$ are nonadjacent angles formed by intersecting lines.
3. $\angle 2$ and $\angle 3$ from a linear pair. $\angle 3$ and $\angle 4$ form a linear pair.
4. $\angle 2$ and $\angle 3$ are supplementary. $\angle 3$ and $\angle 4$ are supplementary.
5. $\angle 2 \cong \angle 4$
6. Given
7. Definition of vertical angles
8. Definition of a linear pair
9. Supplement Theorem
10. $\stackrel{s}{ }$ suppl. to same \angle or $\cong \angle s$ are \cong.

GuidedPractice

3. In the figure, $\angle A B E$ and $\angle D B C$ are right angles. Prove that $\angle A B D \cong \angle E B C$.

Note that in Example 3, $\angle 1$ and $\angle 3$ are vertical angles. The conclusion in the example supports the following Vertical Angles Theorem.

Theorem 2.8 Vertical Angles Theorem

If two angles are vertical angles, then they are congruent.

Abbreviation Vert. «ъ are \cong.
Example $\quad \angle 1 \cong \angle 3$ and $\angle 2 \cong \angle 4$

Prove that if $\overrightarrow{D B}$ bisects $\angle A D C$, then $\angle 2 \cong \angle 3$.
Given: $\overrightarrow{D B}$ bisects $\angle A D C$.
Prove: $\angle 2 \cong \angle 3$
Proof:

Statements

1. $\overrightarrow{D B}$ bisects $\angle A D C$.
2. $\angle 1 \cong \angle 2$
3. $\angle 1$ and $\angle 3$ are vertical angles.
4. $\angle 3 \cong \angle 1$
5. $\angle 3 \cong \angle 2$
6. $\angle 2 \cong \angle 3$

GuidedPractice

4. If $\angle 3$ and $\angle 4$ are vertical angles, $m \angle 3=6 x+2$, and $m \angle 4=8 x-14$, find $m \angle 3$ and $m \angle 4$. Justify each step.

The theorems in this lesson can be used to prove the following right angle theorems.

ReadingMath

Perpendicular Recall from Lesson 1-5 that the symbol \perp means is perpendicular to.

Theorems Right Angle Theorems

Theorem	Example
2.9 Perpendicular lines intersect to form four right angles. Example If $\overrightarrow{A C} \perp \overrightarrow{D B}$, then $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are rt. $\stackrel{s}{ }$.	$A \uparrow$
2.10 All right angles are congruent. Example If $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are rt. \angle s, then $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$.	
2.11 Perpendicular lines form congruent adjacent angles. Example If $\overrightarrow{A C} \perp \overrightarrow{D B}$, then $\angle 1 \cong \angle 2, \angle 2 \cong \angle 4, \angle 3 \cong \angle 4$, and $\angle 1 \cong \angle 3$.	
2.12 If two angles are congruent and supplementary, then each angle is a right angle. Example If $\angle 5 \cong \angle 6$ and $\angle 5$ is suppl. to $\angle 6$, then $\angle 5$ and $\angle 6$ are rt. s.	
2.13 If two congruent angles form a linear pair, then they are right angles. Example If $\angle 7$ and $\angle 8$ form a linear pair, then $\angle 7$ and $\angle 8$ are rt. s .	

You will prove Theorems 2.9-2.13 in Exercises 22-26.

Example 1 Find the measure of each numbered angle, and name the theorems that justify your work.
(1) $m \angle 2=26$
2. $m \angle 2=x, m \angle 3=x-16$
3. $m \angle 4=2 x, m \angle 5=x+9$
4. $m \angle 4=3(x-1), m \angle 5=x+7$

Example 2 5. PARKING Refer to the diagram of the parking lot at the right. Given that $\angle 2 \cong \angle 6$, prove that $\angle 4 \cong \angle 8$.

Example 3 6. PROOF Copy and complete the proof of one case of Theorem 2.6.
Given: $\angle 1$ and $\angle 3$ are complementary. $\angle 2$ and $\angle 3$ are complementary.
Prove: $\angle 1 \cong \angle 2$

Proof:

Statements	Reasons	
a. $\angle 1$ and $\angle 3$ are complementary. $\angle 2$ and $\angle 3$ are complementary.		$?$
b. $\begin{aligned} & m \angle 1+m \angle 3=90 ; \\ & m \angle 2+m \angle 3=90 \end{aligned}$		
c. $m \angle 1+m \angle 3=m \angle 2+m \angle 3$		$?$
d. ?		exive Property
e. $m \angle 1=m \angle 2$		$?$
f. $\angle 1 \cong \angle 2$?

Example 4 7. CCSS ARGUMENTS Write a two-column proof.
Given: $\angle 4 \cong \angle 7$

Prove: $\angle 5 \cong \angle 6$

Examples 1-3 Find the measure of each numbered angle, and name the theorems used that justify your work.
8. $m \angle 5=m \angle 6$

9. $\angle 2$ and $\angle 3$ are complementary. $\angle 1 \cong \angle 4$ and $m \angle 2=28$

10. $\angle 2$ and $\angle 4$ and $\angle 4$ and $\angle 5$ are supplementary. $m \angle 4=105$

Find the measure of each numbered angle and name the theorems used that justify your work.
11. $m \angle 9=3 x+12$
$m \angle 10=x-24$

12. $m \angle 3=2 x+23$
$m \angle 4=5 x-112$

(13) $m \angle 6=2 x-21$ $m \angle 7=3 x-34$

Example 4 PROOF Write a two-column proof.

14. Given: $\angle A B C$ is a right angle.

Prove: $\angle A B D$ and $\angle C B D$ are complementary.

15. Given: $\angle 5 \cong \angle 6$

Prove: $\angle 4$ and $\angle 6$ are supplementary.

Write a proof for each theorem.
16. Supplement Theorem
17. Complement Theorem
18. Reflexive Property of Angle Congruence
19. Transitive Property of Angle Congruence
20. FLAGS Refer to the Florida state flag at the right. Prove that the sum of the four angle measures is 360 .

21. CCSS ARGUMENTS The diamondback rattlesnake is a pit viper with a diamond pattern on its back. An enlargement of a skin is shown below. If $\angle 1 \cong \angle 4$, prove that $\angle 2 \cong \angle 3$.

PROOF Use the figure to write a proof of each theorem.
22. Theorem 2.9
23. Theorem 2.10
24. Theorem 2.11
25. Theorem 2.12
26. Theorem 2.13

27. CCSS ARGUMENTS To mark a specific tempo, the weight on the pendulum of a metronome is adjusted so that it swings at a specific rate. Suppose $\angle A B C$ in the photo is a right angle. If $m \angle 1=45$, write a paragraph proof to show that $\overrightarrow{B R}$ bisects $\angle A B C$.

28. PROOF Write a proof of Theorem 2.8.
29) GEOGRAPHY Utah, Colorado, Arizona, and New Mexico all share a common point on their borders called Four Corners. This is the only place where four states meet in a single point. If $\angle 2$ is a right angle, prove that lines ℓ and m are perpendicular.

30. 5 MULTIPLE REPRESENTATIONS In this problem, you will explore angle relationships.
a. Geometric Draw a right angle $A B C$. Place point D in the interior of this angle and draw $\overrightarrow{B D}$. Draw $\overrightarrow{K L}$ and construct $\angle J K L$ congruent to $\angle A B D$.
b. Verbal Make a conjecture as to the relationship between $\angle J K L$ and $\angle D B C$.
c. Logical Prove your conjecture.

H.O.T. Problems Use Higher-Order Thinking Skills

31. OPEN ENDED Draw an angle $W X Z$ such that $m \angle W X Z=45$. Construct $\angle Y X Z$ congruent to $\angle W X Z$. Make a conjecture as to the measure of $\angle W X Y$, and then prove your conjecture.
32. WRITING IN MATH Write the steps that you would use to complete the proof below.

Given: $\overline{B C} \cong \overline{C D}, A B=\frac{1}{2} B D$

Prove: $\overline{A B} \cong \overline{C D}$
33. CHALLENGE In this lesson, one case of the Congruent Supplements Theorem was proven. In Exercise 6, you proved the same case for the Congruent Complements Theorem. Explain why there is another case for each of these theorems. Then write a proof of this second case for each theorem.
34. REASONING Determine whether the following statement is sometimes, always, or never true. Explain your reasoning.
If one of the angles formed by two intersecting lines is acute, then the other three angles formed are also acute.
35. WRITING IN MATH Explain how you can use your protractor to quickly find the measure of the supplement of an angle.
36. GRIDDED RESPONSE What is the mode of this set of data?

$$
4,3,-2,1,4,0,1,4
$$

37. Find the measure of $\angle C F D$.

A 66°
C 108°
B 72°
D 138°
38. ALGEBRA Simplify.

$$
4(3 x-2)(2 x+4)+3 x^{2}+5 x-6
$$

F $9 x^{2}+3 x-14$
G $9 x^{2}+13 x-14$
H $27 x^{2}+37 x-38$
J $27 x^{2}+27 x-26$
39. SAT/ACT On a coordinate grid where each unit represents 1 mile, Isabel's house is located at $(3,0)$ and a mall is located at $(0,4)$. What is the distance between Isabel's house and the mall?
A 3 miles
D 13 miles
B 5 miles
E 25 miles
C 12 miles

Spiral Rovicw

40. MAPS On a U.S. map, there is a scale that lists kilometers on the top and miles on the bottom.

0 km	20	40	50	60	80	100
$\stackrel{1}{2}$			31		1	
0 mi					62	

Suppose $\overline{A B}$ and $\overline{C D}$ are segments on this map. If $A B=100$ kilometers and $C D=62$ miles, is $\overline{A B} \cong \overline{C D}$? Explain. (Lesson 2-7)

State the property that justifies each statement. (Lesson 2-6)
41. If $y+7=5$, then $y=-2$.
42. If $M N=P Q$, then $P Q=M N$.
43. If $a-b=x$ and $b=3$, then $a-3=x$.
44. If $x(y+z)=4$, then $x y+x z=4$.

Determine the truth value of the following statement for each set of conditions.
If you have a fever, then you are sick. (Lesson 2-3)
45. You do not have a fever, and you are sick.
46. You have a fever, and you are not sick.
47. You do not have a fever, and you are not sick.
48. You have a fever, and you are sick.

Skills Review

Refer to the figure.

49. Name a line that contains point P.
50. Name the intersection of lines n and m.
51. Name a point not contained in lines ℓ, m, or n.
52. What is another name for line n ?

53. Does line ℓ intersect line m or line n ? Explain.
