Angles of Triangles

- You classified triangles by their side or angle measures.

Apply the Triangle Angle-Sum Theorem.

Apply Exterior Angle Theorem.

Massachusetts Institute of Technology (MIT) sponsors the annual Design 2.007 contest in which students design and build a robot.

One test of a robot's movements is to program it to move in a triangular path. The sum of the measures of the pivot angles through which the robot must turn will always be the same.

Triangle Angle-Sum Theorem The Triangle Angle-Sum Theorem gives the relationship among the interior angle measures of any triangle.

Theorem 4.1 Triangle Angle-Sum Theorem

Words The sum of the measures of the angles of a triangle is 180 .
Example $m \angle A+m \angle B+m \angle C=180$

The proof of the Triangle Angle-Sum Theorem requires the use of an auxiliary line. An auxiliary line is an extra line or segment drawn in a figure to help analyze geometric relationships. As with any statement in a proof, you must justify any properties of an auxiliary line that you have drawn.

Proof Triangle Angle-Sum Theorem

Given: $\triangle A B C$
Prove: $m \angle 1+m \angle 2+m \angle 3=180$

Proof:

Statements

1. $\triangle A B C$
2. Draw $\overleftrightarrow{A D}$ through A parallel to $\overrightarrow{B C}$.
3. $\angle 4$ and $\angle B A D$ form a linear pair.
4. $\angle 4$ and $\angle B A D$ are supplementary.
5. $m \angle 4+m \angle B A D=180$
6. $m \angle B A D=m \angle 2+m \angle 5$
7. $m \angle 4+m \angle 2+m \angle 5=180$
8. $\angle 4 \cong \angle 1, \angle 5 \cong \angle 3$
9. $m \angle 4=m \angle 1, m \angle 5=m \angle 3$
10. $m \angle 1+m \angle 2+m \angle 3=180$

Reasons

1. Given
2. Parallel Postulate
3. Def. of a linear pair
4. If $2 \& s$ form a linear pair, they are supplementary.
5. Def. of suppl. \&s
6. Angle Addition Postulate
7. Substitution
8. Alt. Int. \&s Theorem
9. Def. of $\cong \measuredangle$
10. Substitution

The Triangle Angle-Sum Theorem can be used to determine the measure of the third angle of a triangle when the other two angle measures are known.

Real-World Exemple 1 Use the Triangle Angle-Sum Theorem

SOCCER The diagram shows the path of the ball in a passing drill created by four friends. Find the measure of each numbered angle.

Understand Examine the information given in the diagram. You know the measures of two angles of one triangle and only one measure of another. You also know that $\angle A C B$ and $\angle 2$ are vertical angles.

Plan Find $m \angle 3$ using the Triangle Angle-Sum Theorem, because the measures of two angles of $\angle A B C$ are known. Use the Vertical Angles Theorem to find $m \angle 2$. Then you will have enough information to find the measure of $\angle 1$ in $\triangle C D E$.

$$
\text { Solve } \begin{aligned}
m \angle 3+m \angle B A C+m \angle A C B & =180 & & \text { Triangle Angle-Sum Theorem } \\
m \angle 3+20+78 & =180 & & \text { Substitution } \\
m \angle 3+98 & =180 & & \text { Simplify. } \\
m \angle 3 & =82 & & \text { Subtract } 98 \text { from each side. }
\end{aligned}
$$

$\angle A C B$ and $\angle 2$ are congruent vertical angles. So, $m \angle 2=78$.
Use $m \angle 2$ and $\angle C E D$ of $\triangle C D E$ to find $m \angle 1$.

$$
\begin{aligned}
m \angle 1+m \angle 2+m \angle C E D & =180 & & \text { Triangle Angle-Sum Theorem } \\
m \angle 1+78+61 & =180 & & \text { Substitution } \\
m \angle 1+139 & =180 & & \text { Simplify. } \\
m \angle 1 & =41 & & \text { Subtract } 139 \text { from each side. }
\end{aligned}
$$

Check The sums of the measures of the angles of $\triangle A B C$ and $\triangle C D E$ should be 180 . $\triangle A B C: \quad m \angle 3+m \angle B A C+m \angle A C B=82+20+78$ or 180 $\triangle C D E: \quad m \angle 1+m \angle 2+m \angle C E D=41+78+61$ or $180 \checkmark$

GuidedPractice

Find the measures of each numbered angle.

1A.

1 B.

2) Exterior Angle Theorem In addition to its three interior angles, a triangle can have exterior angles formed by one side of the triangle and the extension of an adjacent side. Each exterior angle of a triangle has two remote interior angles that are not adjacent to the exterior angle.

$\angle 4$ is an exterior angle of $\triangle A B C$. Its two remote interior angles are $\angle 1$ and $\angle 3$.

Theorem 4.2 Exterior Angle Theorem

The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

Example $m \angle A+m \angle B=m \angle 1$

ReadingMath

Flowchart Proof A flow proof is sometimes called a flowchart proof.

A flow proof uses statements written in boxes and arrows to show the logical progression of an argument. The reason justifying each statement is written below the box. You can use a flow proof to prove the Exterior Angle Theorem.

Proof Exterior Angle Theorem

Given: $\triangle A B C$
Prove: $m \angle A+m \angle B=m \angle 1$

StudyTip

Flow Proofs Flow proofs can be written vertically or horizontally.

Flow Proof:

Substitution

$$
\frac{\downarrow}{m \angle A+m \angle B=m \angle 1}
$$

Subtraction Property of Equality

The Exterior Angle Theorem can also be used to find missing measures.

FITNESS Find the measure of $\angle J K L$ in the Triangle Pose shown.

$m \angle K L M+m \angle L M K$	$=m \angle J K L$		Exterior Angle Theorem
$x+50$	$=2 x-15$		Substitution
50	$=x-15$		Subtract x from each side.
65	$=x$		Add 15 to each side.

So, $m \angle J K L=2(65)-15$ or 115 .

GuidedPractice

2. CLOSET ORGANIZING Tanya mounts the shelving bracket shown to the wall of her closet. What is the measure of $\angle 1$, the angle that the bracket makes with the wall?

A corollary is a theorem with a proof that follows as a direct result of another theorem. As with a theorem, a corollary can be used as a reason in a proof. The corollaries below follow directly from the Triangle Angle-Sum Theorem.

Corollaries Triangle Angle-Sum Corollaries

4.1 The acute angles of a right triangle are complementary.

Abbreviation: Acute $\&$ s of a rt. \triangle are comp.
Example: If $\angle C$ is a right angle, then $\angle A$ and $\angle B$ are complementary.

4.2 There can be at most one right or obtuse angle in a triangle.

Example: If $\angle L$ is a right or an obtuse angle, then $\angle J$ and $\angle K$ must be acute angles.

You will prove Corollaries 4.1 and 4.2 in Exercises 34 and 35.

Example 3 Find Angle Measures in Right Triangles

Find the measures of each numbered angle.

StudyTip

Check for Reasonableness When you are solving for the measure of one or more angles of a triangle, always check to make sure that the sum of the angle measures is 180 .

$$
\begin{aligned}
m \angle 1+m \angle T Y Z & =90 & & \text { Acute } \angle \mathrm{s} \text { of a rt. } \triangle \text { are comp. } \\
m \angle 1+52 & =90 & & \text { Substitution } \\
m \angle 1 & =38 & & \text { Subtract } 52 \text { from each side. }
\end{aligned}
$$

GuidedPractice

3A. $\angle 2$
3B. $\angle 3$
3C. $\angle 4$

Example 1 Find the measures of each numbered angle.
1.

2.

Example 2 Find each measure.

3. $m \angle 2$
4. $m \angle M P Q$

DECK CHAIRS The brace of this deck chair forms a triangle with the rest of the chair's frame as shown. If $m \angle 1=102$ and $m \angle 3=53$, find each measure.
5. $m \angle 4$
6. $m \angle 6$
7. $m \angle 2$
8. $m \angle 5$

Example 3 CCSS REGULARITY Find each measure.
9. $m \angle 1$
10. $m \angle 3$
11. $m \angle 2$

Practice and Problem Solving

Example 1 Find the measure of each numbered angle.
12.

13.

14.

(15)

16. AIRPLANES The path of an airplane can be modeled using two sides of a triangle as shown. The distance covered during the plane's ascent is equal to the distance covered during its descent.

a. Classify the model using its sides and angles.
b. The angles of ascent and descent are congruent. Find their measures.

Example 2 Find each measure.

17. $m \angle 1$

18. $m \angle 2$

19. $m \angle 4$

20. $m \angle J K L$

Example 3

23. WHEELCHAIR RAMP Suppose the wheelchair ramp shown makes a 12° angle with the ground. What is the measure of the angle the ramp makes with the van door?

REGULARITY Find each measure.

24. $m \angle 1$
25. $m \angle 2$
26. $m \angle 3$
27. $m \angle 4$
28. $m \angle 5$
29. $m \angle 6$

ALGEBRA Find the value of x. Then find the measure of each angle.
30.

31.

32.

(33) GARDENING A landscaper is forming an isosceles triangle in a flowerbed using chrysanthemums. She wants $m \angle A$ to be three times the measure of $\angle B$ and $\angle C$. What should the measure of each angle be?

PROOF Write the specified type of proof.
34. flow proof of Corollary 4.1
35. paragraph proof of Corollary 4.2

CCSS REGULARITY Find the measure of each numbered angle.
36.

37.

38. ALGEBRA Classify the triangle shown by its angles. Explain your reasoning.
39. ALGEBRA The measure of the larger acute angle in a right triangle is two degrees less than three times the measure of the smaller acute angle. Find the measure of each angle.
40. Determine whether the following statement is true or false. If false, give a counterexample. If true, give an argument to support your conclusion.

If the sum of two acute angles of a triangle is greater than 90,
then the triangle is acute.
41. ALGEBRA In $\triangle X Y Z, m \angle X=157, m \angle Y=y$, and $m \angle Z=z$. Write an inequality to describe the possible measures of $\angle Z$. Explain your reasoning.
42. CARS Refer to the photo at the right.
a. Find $m \angle 1$ and $m \angle 2$.
b. If the support for the hood were shorter than the one shown, how would $m \angle 1$ change? Explain.
c. If the support for the hood were shorter than the one shown, how would $m \angle 2$ change? Explain.

(43) two-column proof

Given: RSTUV is a pentagon.
Prove: $m \angle S+m \angle S T U+m \angle T U V$

$$
+m \angle V+m \angle V R S=540
$$

44. flow proof

Given: $\angle 3 \cong \angle 5$
Prove: $m \angle 1+m \angle 2=m \angle 6+m \angle 7$

45. 50. MULTIPLE REPRESENTATIONS In this problem, you will explore the sum of the measures of the exterior angles of a triangle.
a. Geometric Draw five different triangles, extending the sides and labeling the angles as shown. Be sure to include at least one obtuse, one right, and one acute triangle.
b. Tabular Measure the exterior angles of each triangle. Record the measures for each triangle and the sum of these measures in a table.

c. Verbal Make a conjecture about the sum of the exterior angles of a triangle. State your conjecture using words.
d. Algebraic State the conjecture you wrote in part c algebraically.
e. Analytical Write a paragraph proof of your conjecture.

H.O.T. Problems Use Higher-Order Thinking Skills

46. CCSS CRITIQUE Curtis measured and labeled the angles of the triangle as shown. Arnoldo says that at least one of his measures is incorrect. Explain in at least two different ways how Arnoldo knows that this is true.
47. WRITING IN MATH Explain how you would find the missing measures in the figure shown.
48. OPEN ENDED Construct a right triangle and measure one of the acute angles. Find the measure of the
 second acute angle using calculation and explain your method. Confirm your result using a protractor.
49. CHALLENGE Find the values of y and z in the figure at the right.
50. REASONING If an exterior angle adjacent to $\angle A$ is acute, is $\triangle A B C$ acute, right, obtuse,
 or can its classification not be determined? Explain your reasoning.
51. WRITING IN MATH Explain why a triangle cannot have an obtuse, acute, and a right exterior angle.
52. PROBABILITY Mr. Glover owns a video store and wants to survey his customers to find what type of movies he should buy. Which of the following options would be the best way for Mr. Glover to get accurate survey results?

A surveying customers who come in from 9 P.m. until 10 p.m.
B surveying customers who come in on the weekend
C surveying the male customers
D surveying at different times of the week and day
53. SHORT RESPONSE Two angles of a triangle have measures of 35° and 80°. Find the values of the exterior angle measures of the triangle.
54. ALGEBRA Which equation is equivalent
to $7 x-3(2-5 x)=8 x$?
F $2 x-6=8$
G $22 x-6=8 x$
H $-8 x-6=8 x$
J $22 x+6=8 x$
55. SAT/ACT Joey has 4 more video games than Solana and half as many as Melissa. If together they have 24 video games, how many does Melissa have?
A 7
D 13
B 9
E 14
C 12

Spiral Roviow

Classify each triangle as acute, equiangular, obtuse, or right. (Lesson 4-1)
56.

57.

58.

COORDINATE GEOMETRY Find the distance from \boldsymbol{P} to $\boldsymbol{\ell}$. (Lesson 3-6)
59. Line ℓ contains points $(0,-2)$ and $(1,3)$. Point P has coordinates $(-4,4)$.
60. Line ℓ contains points $(-3,0)$ and $(3,0)$. Point P has coordinates $(4,3)$.

Write a conjecture that describes the pattern in each sequence. Then use your conjecture to find the next item in the sequence. (Lesson 2-1)
61.

62.

Skills Rquigw

State the property that justifies each statement.
63. If $\frac{x}{2}=7$, then $x=14$.
64. If $x=5$ and $b=5$, then $x=b$.
65. If $X Y-A B=W Z-A B$, then $X Y=W Z$.
66. If $m \angle A=m \angle B$ and $m \angle B=m \angle C, m \angle A=m \angle C$.
67. If $m \angle 1+m \angle 2=90$ and $m \angle 2=m \angle 3$, then $m \angle 1+m \angle 3=90$.

