Proving Triangles Congruent-SSS, SAS

- You proved triangles congruent using the definition of congruence.

Common Core

State Standards
G.C0.10 Prove theorems about triangles.
G.SRT. 5 Use congruence
and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Mathematical Practices

3 Construct viable
arguments and critique the reasoning of others.
1 Make sense of problems and persevere in solving them.

Content Standards

 ,Use the SSS Postulate to test for triangle congruence.

Use the SAS Postulate to test for triangle congruence.

Why?

An A-frame sandwich board is a convenient way to display information. Not only does it fold flat for easy storage, but with each sidearm locked into place, the frame is extremely sturdy. With the sidearms the same length and positioned the same distance from the top on either side, the open frame forms two congruent triangles.

1SSS Postulate In Lesson 4-3, you proved that two triangles were congruent by showing that all six pairs of corresponding parts were congruent. It is possible to prove two triangles congruent using fewer pairs.

The sandwich board demonstrates that if two triangles have the same three side lengths, then they are congruent. This is expressed in the postulate below.

Postulate 4.1 Side-Side-Side (SSS) Congruence

If three sides of one triangle are congruent to three sides of a second triangle, then the triangles are congruent.

Example If Side $\overline{A B} \cong \overline{D E}$,

$$
\begin{aligned}
& \text { Side } \overline{B C} \cong \overline{E F} \text {, and } \\
& \text { Side } \overline{A C} \cong \overline{D F} \text {, }
\end{aligned}
$$

$$
\text { then } \triangle A B C \cong \triangle D E F
$$

Example 1 Use SSS to Prove Triangles Congruent

Write a flow proof.

Given: $\quad \overline{G H} \cong \overline{K J}, \overline{H L} \cong \overline{J L}$, and L is the midpoint of $\overline{G K}$.

Prove: $\triangle G H L \cong \triangle K J L$

Flow Proof:

GuidedPractice

1. Write a flow proof.

Given: $\triangle Q R S$ is isosceles with $\overline{Q R} \cong \overline{S R}$. $\overline{R T}$ bisects $\overline{Q S}$ at point T.

Prove: $\quad \triangle Q R T \cong \triangle S R T$

Test-TakingTip

Tools When you are solving problems using the coordinate plane, remember to use tools like the Distance, Midpoint, and Slope Formulas to solve problems and to check your solutions.

ReadingMath

Symbols $\triangle A B C \not \approx \triangle E F G$ is read as triangle $A B C$ is not congruent to triangle EFG.

EXTENDED RESPONSE Triangle $A B C$ has vertices $A(1,1), B(0,3)$, and $C(2,5)$.
Triangle $E F G$ has vertices $E(1,-1), F(2,-5)$, and $G(4,-4)$.
a. Graph both triangles on the same coordinate plane.
b. Use your graph to make a conjecture as to whether the triangles are congruent. Explain your reasoning.
c. Write a logical argument using coordinate geometry to support the conjecture you made in part b.

Read the Test Item

You are asked to do three things in this problem. In part a, you are to graph $\triangle A B C$ and $\triangle E F G$ on the same coordinate plane. In part \mathbf{b}, you should make a conjecture that $\triangle A B C \cong \triangle E F G$ or $\triangle A B C \not \equiv \triangle E F G$ based on your graph. Finally, in part \mathbf{c}, you are asked to prove your conjecture.

Solve the Test Item

a.
b. From the graph, it appears that the triangles
 do not have the same shape, so we can conjecture that they are not congruent.
c. Use the Distance Formula to show that not all corresponding sides have the same measure.

$$
\begin{aligned}
A B & =\sqrt{(0-1)^{2}+(3-1)^{2}} & E F & =\sqrt{(2-1)^{2}+[-5-(-1)]^{2}} \\
& =\sqrt{1+4} \text { or } \sqrt{5} & & =\sqrt{1+16} \text { or } \sqrt{17} \\
B C & =\sqrt{(2-0)^{2}+(5-3)^{2}} & F G & =\sqrt{(4-2)^{2}+[-4-(-5)]^{2}} \\
& =\sqrt{4+4} \text { or } \sqrt{8} & & =\sqrt{4+1} \text { or } \sqrt{5} \\
A C & =\sqrt{(2-1)^{2}+(5-1)^{2}} & E G & =\sqrt{(4-1)^{2}+[-4-(-1)]^{2}} \\
& =\sqrt{1+16} \text { or } \sqrt{17} & & =\sqrt{9+9} \text { or } \sqrt{18}
\end{aligned}
$$

While $A B=F G$ and $A C=E F, B C \neq E G$. Since SSS congruence is not met, $\triangle A B C \not \equiv \triangle E F G$.

GuidedPractice

2. Triangle $J K L$ has vertices $J(2,5), K(1,1)$, and $L(5,2)$. Triangle $N P Q$ has vertices $N(-3,0), P(-7,1)$, and $Q(-4,4)$.
a. Graph both triangles on the same coordinate plane.
b. Use your graph to make a conjecture as to whether the triangles are congruent. Explain your reasoning.
c. Write a logical argument using coordinate geometry to support the conjecture you made in part b.

Draw a triangle and label it $\triangle A B C$. Then use the SSS Postulate to construct $\triangle X Y Z \cong \triangle A B C$.

Step 1 Draw point X on a line ℓ. Then construct $\overline{X Z} \cong \overline{A C}$ on line ℓ

Step 2 Construct one arc with radius $A B$ centered at point X and another arc with radius $B C$ centered at point Z.

Step 3 Label the point of intersection of the two $\operatorname{arcs} Y$. Draw $\overline{X Y}$ and $\overline{Z Y}$ to form $\triangle X Y Z$.

SAS Postulate The angle formed by two adjacent sides of a polygon is called an included angle. Consider included angle $J K L$ formed by the hands on the first clock shown below. Any time the hands form an angle with the same measure, the distance between the ends of the hands $\overline{J L}$ and $\overline{P R}$ will be the same.

Any two triangles formed using the same side lengths and included angle measure will be congruent. This illustrates the following postulate.

StudyTip

Side-Side-Angle The measures of two sides and a nonincluded angle are not sufficient to prove two triangles congruent.

Postulate 4.2 Side-Angle-Side (SAS) Congruence

Words If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

Example If Side $\overline{A B} \cong \overline{D E}$,
Angle $\angle B \cong \angle E$, and
Side $\overline{B C} \cong \overline{E F}$,
then $\triangle A B C \cong \triangle D E F$.

LIGHTING The scaffolding for stage lighting shown appears to be made up of congruent triangles. If $\overline{W X} \cong \overline{Y Z}$ and $\overline{W X} \| \overline{Z Y}$, write a two-column proof to prove that $\triangle W X Z \cong \triangle Y Z X$.

Proof:

Statements \quad Reasons

1. $\overline{W X} \cong \overline{Y Z}$
2. $\overline{W X} \| \overline{Z Y}$
3. $\angle W X Z \cong \angle X Z Y$
4. $\overline{X Z} \cong \overline{Z X}$
5. $\triangle W X Z \cong \triangle Y Z X$

GuidedPractice

3. EXTREME SPORTS The wings of the hang glider shown appear to be congruent triangles. If $\overline{F G} \cong \overline{G H}$ and $\overline{J G}$ bisects $\angle F G H$, prove that $\triangle F G J \cong \triangle H G J$.

Reasons

1. Given
2. Given
3. SAS
4. Alternate Interior Angle Theorem
5. Reflexive Property of Congruence

You can also construct congruent triangles given two sides and the included angle.
Y Construction Congruent Triangles Using Two Sides and the Included Angle
Draw a triangle and label it $\triangle A B C$.
Then use the SAS Postulate to construct
$\triangle R S T \cong \triangle A B C$.

Step 1 Draw point R on a line m. Then construct $\overline{R T} \cong \overline{A C}$ on line m.

Step 2 Construct $\angle R \cong \angle A$ using $\overline{R T}$ as a side of the angle and point R.

Step 3 Construct $\overline{R S} \cong \overline{A B}$. Then draw $\overline{S T}$ to form $\triangle R S T$.

StudyTip

Overlapping Figures When triangles overlap, it can be helpful to draw each triangle separately and label the congruent parts. In Example 4, the figure could have been separated as shown.

Write a paragraph proof.

Given: $\overline{B C} \cong \overline{D C}, \angle B C F \cong \angle D C E, \overline{F C} \cong \overline{E C}$
Prove: $\angle C F D \cong \angle C E B$

Proof:

Since $\overline{B C} \cong \overline{D C}, \angle B C F \cong \angle D C E$, and $\overline{F C} \cong \overline{E C}$, then
 $\triangle B C F \cong \triangle D C E$ by SAS. By CPCTC, $\angle C F B \cong \angle C E D$.
$\angle C F D$ forms a linear pair with $\angle C F B$, and $\angle C E B$ forms
a linear pair with $\angle C E D$. By the Congruent Supplements Theorem, $\angle C F D$ is supplementary to $\angle C F B$ and $\angle C E B$ is supplementary to $\angle C E D$. Since angles supplementary to the same angle or congruent angles are congruent, $\angle C F D \cong \angle C E B$.

GuidedPractice

4. Write a two-column proof.

Given: $\overline{M N} \cong \overline{P N}, \overline{L M} \cong \overline{L P}$
Prove: $\angle L N M \cong \angle L N P$

Check Your Understanding

1. OPTICAL ILLUSION The figure shown is a pattern formed using four large congruent squares and four small congruent squares.
a. How many different-sized triangles are used to create the illusion?
b. Use the Side-Side-Side Congruence Postulate to prove that $\triangle A B C \cong \triangle C D A$.
c. What is the relationship between $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$? Explain your reasoning.

Example 2
2. EXTENDED RESPONSE Triangle $A B C$ has vertices $A(-3,-5), B(-1,-1)$, and $C(-1,-5)$. Triangle $X Y Z$ has vertices $X(5,-5), Y(3,-1)$, and $Z(3,-5)$.
a. Graph both triangles on the same coordinate plane.
b. Use your graph to make a conjecture as to whether the triangles are congruent. Explain your reasoning.
c. Write a logical argument using coordinate geometry to support your conjecture.

Example 3 (3) EXERCISE In the exercise diagram, if $\overline{L P} \cong \overline{N O}, \angle L P M \cong \angle N O M$, and $\triangle M O P$ is equilateral, write a paragraph proof to show that $\triangle L M P \cong \triangle N M O$.

4. Write a two-column proof.

Given: $\overline{B A} \cong \overline{D C}, \angle B A C \cong \angle D C A$
Prove: $\overline{B C} \cong \overline{D A}$

Practice and Problem Solving

Example 1 PROOF Write the specified type of proof.
5. paragraph proof
Given: $\begin{aligned} & \overline{Q R} \cong \overline{S R}, \\ & \overline{S T} \cong \overline{Q T}\end{aligned}$
Prove: $\triangle Q R T \cong \triangle S R T$

6. two-column proof

Given: $\overline{A B} \cong \overline{E D}, \overline{C A} \cong \overline{C E} ;$ $\overline{A C}$ bisects $\overline{B D}$.
Prove: $\triangle A B C \cong \triangle E D C$

7. BRIDGES The Sunshine Skyway Bridge in Florida is the world's longest cable-stayed bridge, spanning 4.1 miles of Tampa Bay. It is supported using steel cables suspended from two concrete supports. If the supports are the same height above the roadway and perpendicular to the roadway, and the topmost cables meet at a point midway between the supports, prove that the two triangles shown in the photo are congruent.

Example 2 CCSS SENSE-MAKING Determine whether $\triangle M N O \cong \triangle Q R S$. Explain.

8. $M(2,5), N(5,2), O(1,1), Q(-4,4), R(-7,1), S(-3,0)$
(9) $M(0,-1), N(-1,-4), O(-4,-3), Q(3,-3), R(4,-4), S(3,3)$
9. $M(0,-3), N(1,4), O(3,1), Q(4,-1), R(6,1), S(9,-1)$
10. $M(4,7), N(5,4), O(2,3), Q(2,5), R(3,2), S(0,1)$

Example 3 PROOF Write the specified type of proof.

12. two-column proof

Given: $\overline{B D} \perp \overline{A C}$, $\overline{B D}$ bisects $\overline{A C}$.
Prove: $\triangle A B D \cong \triangle C B D$

13. paragraph proof

Given: R is the midpoint of $\overline{Q S}$ and $\overline{P T}$.
Prove: $\triangle P R Q \cong \triangle T R S$

PROOF Write the specified type of proof.
14. flow proof

Given: $\overline{J M} \cong \overline{N K} ; L$ is the midpoint of $\overline{J N}$ and $\overline{K M}$.
Prove: $\angle M J L \cong \angle K N L$

15. paragraph proof

Given: $\triangle X Y Z$ is equilateral.
$\overline{W Y}$ bisects $\angle X Y Z$.
Prove: $\overline{X W} \cong \overline{Z W}$

ARGUMENTS Determine which postulate can be used to prove that the triangles are congruent. If it is not possible to prove congruence, write not possible.
16.

(17)

18.

19.

20. SIGNS Refer to the diagram at the right.
a. Identify the three-dimensional figure represented by the wet floor sign.
b. If $\overline{A B} \cong \overline{A D}$ and $\overline{C B} \cong \overline{D C}$, prove that $\triangle A C B \cong \triangle A C D$.
c. Why do the triangles not look congruent in the diagram?

PROOF Write a flow proof.
21. Given: $\overline{M J} \cong \overline{M L} ; K$ is the midpoint of $\overline{J L}$.
Prove: $\triangle M J K \cong \triangle M L K$

22. Given: $\triangle T P Q \cong \triangle S P R$
$\angle T Q R \cong \angle S R Q$
Prove: $\triangle T Q R \cong \triangle S R Q$

23. SOFTBALL Use the diagram of a fast-pitch softball diamond shown. Let $F=$ first base, $S=$ second base, $T=$ third base, $P=$ pitching point, and $R=$ home plate.
a. Write a two-column proof to prove that the distance from first base to third base is the same as the distance from home plate to second base.
b. Write a two-column proof to prove that the angle formed between second base, home plate, and third base is the same as the angle formed between second base,
 home plate, and first base.

PROOF Write a two-column proof.
24. Given: $\overline{Y X} \cong \overline{W Z}, \overline{Y X} \| \overline{Z W}$

Prove: $\triangle Y X Z \cong \triangle W Z X$

ARGUMENTS Write a paragraph proof.
Given: $\overline{H L} \cong \overline{H M}, \overline{P M} \cong \overline{K L}$,

Prove: $\angle G \cong \angle J$
25. Given: $\triangle E A B \cong \triangle D C B$

Prove: $\triangle E A D \cong \triangle D C E$

26.

$$
\overline{P G} \cong \overline{K J}, \overline{G H} \cong \overline{J H}
$$

ALGEBRA Find the value of the variable that yields congruent triangles. Explain.
(27) $\triangle W X Y \cong \triangle W X Z$

28. $\triangle A B C \cong \triangle F G H$

H.O.T. Problems Use Higher-Order Thinking Skills

29. CHALLENGE Refer to the graph shown.
a. Describe two methods you could use to prove that $\triangle W Y Z$ is congruent to $\triangle W Y X$. You may not use a ruler or a protractor. Which method do you think is more efficient? Explain.
b. Are $\triangle W Y Z$ and $\triangle W Y X$ congruent? Explain your reasoning.
30. REASONING Determine whether the following statement

 is true or false. If true, explain your reasoning. If false, provide a counterexample.
If the congruent sides in one isosceles triangle have the same measure as the congruent sides in another isosceles triangle, then the triangles are congruent.
31. ERROR ANALYSIS Bonnie says that $\triangle P Q R \cong \triangle X Y Z$ by SAS. Shada disagrees. She says that there is not enough information to prove that the two triangles are congruent. Is either of them correct? Explain.

32. OPEN ENDED Use a straightedge to draw obtuse triangle $A B C$. Then construct $\triangle X Y Z$ so that it is congruent to $\triangle A B C$ using either SSS or SAS. Justify your construction mathematically and verify it using measurement.
33. WRITING IN MATH Two pairs of corresponding sides of two right triangles are congruent. Are the triangles congruent? Explain your reasoning.
34. ALGEBRA The Ross Family drove 300 miles to visit their grandparents. Mrs. Ross drove 70 miles per hour for 65% of the trip and 35 miles per hour or less for 20% of the trip that was left. Assuming that Mrs. Ross never went over 70 miles per hour, how many miles did she travel at a speed between 35 and 70 miles per hour?
A 195
C 21
B 84
D 18
35. In the figure, $\angle C \cong \angle Z$ and $\overline{A C} \cong \overline{X Z}$.

What additional information could be used to prove that $\triangle A B C \cong \triangle X Y Z$?
F $\overline{B C} \cong \overline{Y Z}$
G $\overline{A B} \cong \overline{X Y}$
$\mathbf{H} \overline{B C} \cong \overline{X Z}$
J $\overline{X Z} \cong \overline{X Y}$
36. EXTENDED RESPONSE The graph below shows the eye colors of all of the students in a class. What is the probability that a student chosen at random from this class will have blue eyes? Explain your reasoning.

37. SAT/ACT If $4 a+6 b=6$ and $-2 a+b=-7$, what is the value of a ?

A - 2
B -1
C 2
D 3
E 4

Spiral Review

In the diagram, $\triangle L M N \cong \triangle Q R S$. (Lesson 4-3)
38. Find x.
39. Find y.

40. ASTRONOMY The Big Dipper is a part of the larger constellation Ursa Major. Three of the brighter stars in the constellation form $\triangle R S A$. If $m \angle R=41$ and $m \angle S=109$, find $m \angle A$. (Lesson 4-2)

Write an equation in slope-intercept form for each line. (Lesson 3-4)
41. $(-5,-3)$ and $(10,-6)$
42. $(4,-1)$ and $(-2,-1)$
43. $(-4,-1)$ and $(-8,-5)$

Determine the truth value of each conditional statement. If true, explain your reasoning.
If false, give a counterexample. (Lesson 2-3)
44. If $x^{2}=25$, then $x=5$.
45. If you are 16, you are a junior in high school.

Skills Review

State the property that justifies each statement.
46. $A B=A B$
48. If $a^{2}=b^{2}-c^{2}$, then $b^{2}-c^{2}=a^{2}$.
47. If $E F=G H$ and $G H=J K$, then $E F=J K$.
49. If $X Y+20=Y W$ and $X Y+20=D T$, then $Y W=D T$.

