: Then

- You proved triangles congruent using SSS and SAS.

NewVocabulary included side

Common Core State Standards

Content Standards
G.C0.10 Prove theorems about triangles.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Mathematical Practices

3 Construct viable arguments and critique the reasoning of others.
5 Use appropriate tools strategically.

1ASA Postulate An included side is the side located between two consecutive angles of a polygon. In $\triangle A B C$ at the right, $\overline{A C}$ is the included side between $\angle A$ and $\angle C$.

Postulate 4.3 Angle-Side-Angle (ASA) Congruence

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

Example If Angle $\angle A \cong \angle D$,
Side $\overline{A B} \cong \overline{D E}$, and
Angle $\angle B \cong \angle E$,
then $\triangle A B C \cong \triangle D E F$.

Construction Congruent Triangles Using Two Angles and Included Side

Draw a triangle and label it $\triangle A B C$. Then use the ASA Postulate to construct $\triangle X Y Z \cong \triangle A B C$.

Step 1

Draw a line ℓ and select a point X. Construct $\overline{X Z}$ such that $\overline{X Z} \cong \overline{A C}$.

Step 2

Construct an angle congruent to $\angle A$ at X using $\overleftrightarrow{X Z}$ as a side of the angle.

Example 1 Use ASA to Prove Triangles Congruent

Write a two-column proof.
Given: $\overline{Q S}$ bisects $\angle P Q R$;

$$
\angle P S Q \cong \angle R S Q
$$

Prove: $\triangle P Q S \cong \triangle R Q S$
Proof:

Statements

1. $\overline{Q S}$ bisects $\angle P Q R ; \angle P S Q \cong \angle R S Q$.
2. $\angle P Q S \cong \angle R Q S$
3. $\overline{Q S} \cong \overline{Q S}$
4. $\triangle P Q S \cong \triangle R Q S$

Reasons

1. Given
2. Definition of Angle Bisector
3. Reflexive Property of Congruence
4. ASA

GuidedPractice

1. Write a flow proof.

Given: $\overline{Z X}$ bisects $\angle W Z Y ; \overline{X Z}$ bisects $\angle Y X W$.
Prove: $\triangle W X Z \cong \triangle X Z Y$

AAS Theorem The congruence of two angles and a nonincluded side are also sufficient to prove two triangles congruent. This congruence relationship is a theorem because it can be proved using the Third Angles Theorem.

Theorem 4.5 Angle-Angle-Side (AAS) Congruence

If two angles and the nonincluded side of one triangle are congruent to the corresponding two angles and side of a second triangle, then the two triangles are congruent.
Example If Angle $\angle A \cong \angle D$,
Angle $\angle B \cong \angle E$, and
Side $\overline{B C} \cong \overline{E F}$,
then $\triangle A B C \cong \triangle D E F$.

Proof Angle-Angle-Side Theorem

Given: $\angle L \cong \angle Q, \angle M \cong \angle R, \overline{M N} \cong \overline{R S}$
Prove: $\triangle L M N \cong \triangle Q R S$
Proof:

Write a two-column proof.
Given: $\angle D A C \cong \angle B E C$
$\overline{D C} \cong \overline{B C}$
Prove: $\triangle A C D \cong \triangle E C B$

Proof: We are given that $\angle D A C \cong \angle B E C$ and $\overline{D C} \cong \overline{B C} . \angle C \cong \angle C$ by the Reflexive Property. By AAS, $\triangle A C D \cong \triangle E C B$.

GuidedPractice

2. Write a flow proof.

Given: $\overline{R Q} \cong \overline{S T}$ and $\overline{R Q} \| \overline{S T}$
Prove: $\triangle R U Q \cong \triangle T U S$

You can use congruent triangles to measure distances that are difficult to measure directly.

Real-World Example 3 Apply Triangle Congruence

COMIMUNITY SERVICE Jeremias is working with a community service group to build a bridge across a creek at a local park. The bridge will span the creek between points C and B. Jeremias located a fixed point D to use as a reference point so that the segments have the relationships shown. A is the midpoint of $\overline{C D}$ and $D E$ is 15 feet. How long does the bridge need to be?

In order to determine the length of $\overline{C B}$, we must first prove that the two triangles Jeremias has created are congruent.

- Since $\overline{C D}$ is perpendicular to both $\overline{C B}$ and $\overline{D E}$, the segments form right angles as shown on the diagram.
- All right angles are congruent, so $\angle B C A \cong \angle E D A$.
- Point A is the midpoint of $\overline{C D}$, so $\overline{C A} \cong \overline{A D}$.
- $\angle B A C$ and $\angle E A D$ are vertical angles, so they are congruent.

Therefore, by ASA, $\triangle B A C \cong \triangle E A D$.
Since $\triangle B A C \cong \triangle E A D, \overline{D E} \cong \overline{C B}$ by CPCTC. Since the measure of $\overline{D E}$ is 15 feet, the measure of $\overline{C B}$ is also 15 feet. Therefore, the bridge needs to be 15 feet long.

GuidedPractice

3. In the sign scaffold shown at the right, $\overline{B C} \perp \overline{A C}$ and $\overline{D E} \perp \overline{C E} . \angle B A C \cong \angle D C E$, and $\overline{A B} \cong \overline{C D}$. Write a paragraph proof to show that $\overline{B C} \cong \overline{D E}$.

You have learned several methods for proving triangle congruence.

ConceptSummary Proving Triangles Congruent

Three pairs of corresponding sides are congruent.	Two pairs of corresponding sides and their included angles are congruent.	Two pairs of corresponding angles and their included sides are congruent.		Two pairs of corresponding
:---				
angles and the corresponding				
nonincluded sides are				
congruent.				

Gheck Your Understanding
Step-by-Step Solutions begin on page R14.

Example 1 PROOF Write the specified type of proof.

1. two-column proof

Given: $\overline{C B}$ bisects $\angle A B D$ and $\angle A C D$.
Prove: $\triangle A B C \cong \triangle D B C$

Example 2
3. paragraph proof

Given: $\angle K \cong \angle M, \overline{J K} \cong \overline{J M}$,
$\overline{J L}$ bisects $\angle K L M$.
Prove: $\triangle J K L \cong \triangle J M L$

2. flow proof

Given: $\overline{J K}\|\overline{L M}, \overline{L L}\| \overline{K M}$
Prove: $\triangle J M L \cong \triangle M J K$

4. two-column proof

Given: $\overline{G H} \| \overline{F J}$

$$
m \angle G=m \angle J=90
$$

Prove: $\triangle H J F \cong \triangle F G H$

Example 3 BRIDGE BUILDING A surveyor needs to find the distance from point A to point B across a canyon. She places a stake at A, and a coworker places a stake at B on the other side of the canyon. The surveyor then locates C on the same side of the canyon as A such that $\overline{C A} \perp \overline{A B}$. A fourth stake is placed at E, the midpoint of $\overline{C A}$. Finally, a stake is placed at D such that $\overline{C D} \perp \overline{C A}$ and D, E, and B are sited as lying along the same line.
a. Explain how the surveyor can use the triangles formed to find $A B$.

b. If $A C=1300$ meters, $D C=550$ meters, and $D E=$ 851.5 meters, what is $A B$? Explain your reasoning.

Practice and Problem Solving

Example 1 PROOF Write a paragraph proof.

6. Given: $\overline{C E}$ bisects $\angle B E D ; \angle B C E$ and $\angle E C D$ are right angles.

Prove: $\triangle E C B \cong \triangle E C D$

7. Given: $\angle W \cong \angle Y$, $\overline{W Z} \cong \overline{Y Z}$, $\overline{X Z}$ bisects $\angle W Z Y$.

Prove: $\triangle X W Z \cong \triangle X Y Z$

8. TOYS The object of the toy shown is to make the two spheres meet and strike each other repeatedly on one side of the wand and then again on the other side. If $\angle J K L \cong \angle M L K$ and $\angle J L K \cong \angle M K L$, prove that $\overline{J K} \cong \overline{M L}$.

Example 2 PROOF Write a two-column proof.

(9) Given: V is the midpoint of $\overline{Y W}$;

$$
\overline{U Y} \| \overline{X W}
$$

Prove: $\triangle U V Y \cong \triangle X V W$

10. Given: $\overline{M S} \cong \overline{R Q}, \overline{M S} \| \overline{R Q}$

Prove: $\triangle M S P \cong \triangle R Q P$

12. PROOF Write a flow proof.

Given: $\overline{K M}$ bisects $\angle J M L ; \angle J \cong \angle L$.
Prove: $\overline{J M} \cong \overline{L M}$

Example 3

13. CCSS MODELING A high school wants to hold a 1500-meter regatta on Lake Powell but is unsure if the lake is long enough. To measure the distance across the lake, the crew members locate the vertices of the triangles below and find the measures of the lengths of $\triangle H J K$ as shown below.

a. Explain how the crew team can use the triangles formed to estimate the distance $F G$ across the lake.
b. Using the measures given, is the lake long enough for the team to use as the location for their regatta? Explain your reasoning.

ALGEBRA Find the value of the variable that yields congruent triangles.
14. $\triangle B C D \cong \triangle W X Y$

(15) $\triangle M H J \cong \triangle P Q J$

16. THEATER DESIGN The trusses of the roof of the outdoor theater shown below appear to be several different pairs of congruent triangles. Assume that trusses that appear to lie on the same line actually lie on the same line.

a. If $\overline{A B}$ bisects $\angle C B D$ and $\angle C A D$, prove that $\triangle A B C \cong \triangle A B D$.
b. If $\triangle A B C \cong \triangle A B D$ and $\angle F C A \cong \angle E D A$, prove that $\triangle C A F \cong \triangle D A E$.
c. If $\overline{H B} \cong \overline{E B}, \angle B H G \cong \angle B E A, \angle H G J \cong \angle E A D$, and $\angle J G B \cong \angle D A B$, prove that $\triangle B H G \cong \triangle B E A$.

PROOF Write a paragraph proof.
17. Given: $\overline{A E} \perp \overline{D E}, \overline{E A} \perp \overline{A B}$, C is the midpoint of $\overline{A E}$.
Prove: $\overline{C D} \cong \overline{C B}$

PROOF Write a two-column proof.
19. Given: $\angle K \cong \angle M, \overline{K P} \perp \overline{P R}, \overline{M R} \perp \overline{P R}$ Prove: $\angle K P L \cong \angle M R L$

(21) FITNESS The seat tube of a bicycle forms a triangle with each seat and chain stay as shown. If each seat stay makes a 44° angle with its corresponding chain stay and each chain stay makes a 68° angle with the seat tube, show that the two seat stays are the same length.
18. Given: $\angle F \cong \angle J, \overline{F H} \| \overline{G J}$

Prove: $\overline{F H} \cong \overline{J G}$

20. Given: $\overline{Q R} \cong \overline{S R} \cong \overline{W R} \cong \overline{V R}$

Prove: $\overline{Q T} \cong \overline{W U}$

H.O.T. Problems Use Higher-Order Thinking Skills

22. OPEN ENDED Draw and label two triangles that could be proved congruent by ASA.
23. CCSS CRITIQUE Tyrone says it is not possible to show that $\triangle A D E \cong \triangle A C B$. Lorenzo disagrees, explaining that since $\angle A D E \cong \angle A C B$, and $\angle A \cong \angle A$ by the Reflexive Property, $\triangle A D E \cong \triangle A C B$. Is either of them correct? Explain.

24. REASONING Find a counterexample to show why SSA (Side-Side-Angle) cannot be used to prove the congruence of two triangles.
25. CHALLENGE Using the information given in the diagram, write a flow proof to show that $\triangle P V Q \cong \triangle S V T$.
26. ERITING In math How do you know what method (SSS, SAS, etc.) to use when proving triangle congruence? Use a chart to explain your reasoning.

27. Given: $\overline{B C}$ is perpendicular to $\overline{A D} ; \angle 1 \cong \angle 2$.

Which theorem or postulate could be used to prove $\triangle A B C \cong \triangle D B C$?
A AAS
C SAS
B ASA
D SSS
28. SHORT RESPONSE Write an expression that can be used to find the values of $s(n)$ in the table.

\boldsymbol{n}	-8	-4	-1	0	1
$\boldsymbol{s}(\boldsymbol{n})$	1.00	2.00	2.75	3.00	3.25

29. ALGEBRA If -7 is multiplied by a number greater than 1 , which of the following describes the result?
F a number greater than 7
G a number between -7 and 7
H a number greater than -7
J a number less than -7
30. SAT/ACT $\sqrt{121+104}=$?

A 15
B 21
C 25
D 125
E 225

Spiral Roview

Determine whether $\triangle A B C \cong \triangle X Y Z$. Explain. (Lesson 4-4)
31. $A(6,4), B(1,-6), C(-9,5)$,
$X(0,7), Y(5,-3), Z(15,8)$
32. $A(0,5), B(0,0), C(-2,0)$,
$X(4,8), Y(4,3), Z(6,3)$
33. ALGEBRA If $\triangle R S T \cong \triangle J K L, R S=7, S T=5, R T=9+x, J L=2 x-10$, and $J K=4 y-5$, draw and label a figure to represent the congruent triangles.
Then find x and y. (Lesson 4-3)
34. FINANCIAL LITERACY Maxine charges $\$ 5$ to paint a mailbox and $\$ 4$ per hour to mow a lawn. Write an equation to represent the amount of money Maxine can earn from a homeowner who has his or her mailbox painted and lawn mowed. (Lesson 3-4)

Copy and complete each truth table. (Lesson 2-2)
35.

\boldsymbol{p}	\boldsymbol{q}	$\sim \boldsymbol{p}$	$\sim \boldsymbol{p} \vee \boldsymbol{q}$
F	T		
T	T		
F	F		
T	F		

36.

p	q	$\sim q$	$\sim q \wedge p$
F		F	
T		T	
T		F	
F		T	

Skills Review

PROOF Write a two-column proof for each of the following.
37. Given: $\angle 2 \cong \angle 1$
$\angle 1 \cong \angle 3$
Prove: $\overline{A B} \| \overline{D E}$

38. Given: $\angle M J K \cong \angle K L M$
$\angle L M J$ and $\angle K L M$ are supplementary.
Prove: $\overline{K J} \| \overline{L M}$

