- You identified and used perpendicular and angle bisectors in triangles.

1Identify and use medians in triangles.

2Identify and use altitudes in triangles.

Why?

A mobile is a kinetic or moving sculpture that uses the principles of balance and equilibrium. Simple mobiles consist of several rods attached by strings from which objects of varying weights hang. The hanging objects balance each other and can rotate freely. To ensure that a triangle in a mobile hangs parallel to the ground, artists have to find the triangle's balancing point.

NewVocabulary

median
centroid
altitude
orthocenter

Common Core State Standards

Content Standards

G.C0.10 Prove theorems about triangles.
G.MG. 3 Apply geometric methods to solve problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).

Mathematical Practices

6 Attend to precision.
3 Construct viable arguments and critique the reasoning of others.

1Medians A median of a triangle is a segment with endpoints being a vertex of a triangle and the midpoint of the opposite side.

Every triangle has three medians that are concurrent. The point of concurrency of the medians of a triangle is called the centroid and is always inside the triangle.

$\overline{C D}$ is a median of $\triangle A B C$.

Theorem 5.7 Centroid Theorem

The medians of a triangle intersect at a point called the centroid that is two thirds of the distance from each vertex to the midpoint of the opposite side.

Example If P is the centroid of $\triangle A B C$, then

$$
A P=\frac{2}{3} A K, B P=\frac{2}{3} B L, \text { and } C P=\frac{2}{3} C J .
$$

You will prove Theorem 5.7 in Exercise 36.

Example 1 Use the Centroid Theorem

In $\triangle A B C, Q$ is the centroid and $B E=9$. Find $B Q$ and $Q E$.

$$
\begin{aligned}
B Q & =\frac{2}{3} B E & & \text { Centroid Theorem } \\
& =\frac{2}{3}(9) \text { or } 6 & & B E=9
\end{aligned}
$$

$$
\begin{aligned}
B Q+Q E & =9 & & \text { Segment Addition } \\
6+Q E & =9 & & B Q=6 \\
Q E & =3 & & \text { Subtract } 6 \text { from each side. }
\end{aligned}
$$

GuidedPractice In $\triangle A B C$ above, $F C=15$. Find each length.
1A. $F Q$
1B. $Q C$

StudyTip

CCSS Reasoning In
Example 2, you can also use number sense to find $K P$.
Since $K P=\frac{2}{3} K T, P T=\frac{1}{3} K T$ and $K P=2 P T$. Therefore, if $P T=2$, then $K P=2(2)$ or 4 .

Example 2 Use the Centroid Theorem

In $\triangle J K L, P T=2$. Find $K P$.

Since $\overline{J R} \cong \overline{R K}, R$ is the midpoint of $\overline{J K}$ and $\overline{L R}$ is a median of $\triangle J K L$. Likewise, S and T are the midpoints of $\overline{K L}$ and $\overline{L J}$ respectively, so $\overline{J S}$ and $\overline{K T}$ are also medians of $\triangle J K L$. Therefore, point P is the centroid of $\triangle J K L$.

$$
\begin{aligned}
K P & =\frac{2}{3} K T & & \text { Centroid Theorem } \\
K P & =\frac{2}{3}(K P+P T) & & \text { Segment Addition and Substitution } \\
K P & =\frac{2}{3}(K P+2) & & P T=2 \\
K P & =\frac{2}{3} K P+\frac{4}{3} & & \text { Distributive Property } \\
\frac{1}{3} K P & =\frac{4}{3} & & \text { Subtract } \frac{2}{3} K P \text { from each side. } \\
K P & =4 & & \text { Multiply each side by } 3 .
\end{aligned}
$$

GuidedPractice

In $\triangle J K L$ above, $R P=3.5$ and $J P=9$. Find each measure.
2A. PL
2B. $P S$

All polygons have a balance point or centroid. The centroid is also the balancing point or center of gravity for a triangular region. The center of gravity is the point at which the region is stable under the influence of gravity.

RealWorld Example 3 Find the Centroid on Coordinate Plane

PT
(mb
PERFORMANCE ART A performance artist plans to balance triangular pieces of metal during her next act. When one such triangle is placed on the coordinate plane, its vertices are located at $(1,10),(5,0)$, and $(9,5)$. What are the coordinates of the point where the artist should support the triangle so that it will balance?
Understand You need to find the centroid of the triangle with the given coordinates. This is the point at which the triangle will balance.

Plan Graph and label the triangle with vertices $A(1,10), B(5,0)$, and $C(9,5)$. Since the centroid is the point of concurrency of the medians of a triangle, use the Midpoint Theorem to find the midpoint of one of the sides of the triangle. The centroid is two-thirds the distance from the opposite vertex to that midpoint.

Math HistoryLink

Pierre de Fermat (1601-1665) Another triangle center is the Fermat point, which minimizes the sum of the distances from the three vertices. Fermat is one of the best-known mathematicians for writing proofs.

ReadingMath

Height of a Triangle The length of an altitude is known as the height of the triangle. The height of a triangle is used to calculate the triangle's area.

Solve Graph $\triangle A B C$.
Find the midpoint D of side $\overline{A B}$ with endpoints $A(1,10)$ and $B(5,0)$.
$D\left(\frac{1+5}{2}, \frac{10+0}{2}\right)=D(3,5)$
Graph point D. Notice that $\overline{D C}$ is a horizontal line. The distance from $D(3,5)$ to $C(9,5)$ is $9-3$ or 6 units.

If P is the centroid of $\triangle A B C$, then $P C=\frac{2}{3} D C$. So the centroid is $\frac{2}{3}(6)$ or 4 units to the left of C. The coordinates of P are $(9-4,5)$ or $(5,5)$. The performer should balance the triangle at the point $(5,5)$.

Check Use a different median to check your answer. The midpoint F of side $\overline{A C}$ is $F\left(\frac{1+9}{2}, \frac{10+5}{2}\right)$ or $F(5,7.5) . \overline{B F}$ is a vertical line, so the distance from B to F is $7.5-0$ or $7.5 . \overline{P B}=\frac{2}{3}(7.5)$ or 5 , so P is 5 units up from B. The coordinates of P are $(5,0+5)$ or $(5,5)$.

GuidedPractice

3. A second triangle has vertices at $(0,4),(6,11.5)$, and $(12,1)$. What are the coordinates of the point where the artist should support the triangle so that it will balance? Explain your reasoning.

Altitudes An altitude of a triangle is a segment from a vertex to the line containing the opposite side and perpendicular to the line containing that side. An altitude can lie in the interior, exterior, or on the side of a triangle.

$\overline{B D}$ is an altitude from B to $\overline{A C}$.

Every triangle has three altitudes. If extended, the altitudes of a triangle intersect in a common point.

KeyConcept Orthocenter

The lines containing the altitudes of a triangle are concurrent, intersecting at a point called the orthocenter.
Example The lines containing altitudes $\overline{A F}, \overline{C D}$, and $\overline{B G}$ intersect at P, the orthocenter of $\triangle A B C$.

StudyTip

Check for Reasonableness Use the corner of a sheet of paper to draw the altitudes of each side of the triangle.

The intersection is located at approximately $\left(1,2 \frac{1}{2}\right)$, so the answer is reasonable.

COORDINATE GEOMETRY The vertices of $\triangle F G H$ are $F(-2,4), G(4,4)$, and $H(1,-2)$. Find the coordinates of the orthocenter of $\triangle F G H$.

Step 1 Graph $\triangle F G H$. To find the orthocenter, find the point where two of the three altitudes intersect.

Step 2 Find an equation of the altitude from F to $\overline{G H}$. The slope of $\overline{G H}$ is $\frac{4-(-2)}{4-1}$ or 2 , so the slope of the altitude, which is perpendicular to $\overline{G H}$, is $-\frac{1}{2}$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) & & \text { Point-slope form } \\
y-4 & =-\frac{1}{2}[x-(-2)] & & m=-\frac{1}{2} \text { and }\left(x_{1}, y_{1}\right)=F(-2,4) . \\
y-4 & =-\frac{1}{2}(x+2) & & \text { Simplify. } \\
y-4 & =-\frac{1}{2} x-1 & & \text { Distributive Property } \\
y & =-\frac{1}{2} x+3 & & \text { Add 4 to each side. }
\end{aligned}
$$

Find an equation of the altitude from G to $\overline{F H}$. The slope of $\overline{F H}$ is $\frac{-2-4}{1-(-2)}$ or -2 , so the slope of the altitude is $\frac{1}{2}$.
$y-y_{1}=m\left(x-x_{1}\right) \quad$ Point-slope form
$y-4=\frac{1}{2}(x-4) \quad m=\frac{1}{2}$ and $\left(x_{1}, y_{1}\right)=G(4,4)$
$y-4=\frac{1}{2} x-2 \quad$ Distributive Property
$y=\frac{1}{2} x+2 \quad$ Add 4 to each side.
Step 3 Solve the resulting system of equations $\left\{\begin{array}{l}y=-\frac{1}{2} x+3 \\ \text { intersection of the altitudes. }\end{array}\right.$ to find the point of
$y=\frac{1}{2} x+2$ Adding the two equations to eliminate x results in $2 y=5$ or $y=\frac{5}{2}$.
$y=\frac{1}{2} x+2$
Equation of altitude from G
$\frac{5}{2}=\frac{1}{2} x+2$
$y=\frac{5}{2}$
$\frac{1}{2}=\frac{1}{2} x \quad$ Subtract $\frac{4}{2}$ or 2 from each side.
$1=x \quad$ Multiply each side by 2.
The coordinates of the orthocenter of $\triangle J K L$ are $\left(1, \frac{5}{2}\right)$ or $\left(1,2 \frac{1}{2}\right)$.

GuidedPractice

4. Find the coordinates of the orthocenter of $\triangle A B C$ graphed at the right.

ConceptSummary Special Segments and Points in Triangles

| Name | | Point of
 Concurrency | Special Property |
| :---: | :---: | :---: | :---: | :---: |
| perpendicular | | | |
| bisector | | | |

Gheck Your Understanding
Examples 1-2 In $\triangle A C E, P$ is the centroid, $P F=6$, and $A D=15$. Find each measure.
(1) $P C$
2. $A P$

Example 3 3. INTERIOR DESIGN An interior designer is creating a custom coffee table for a client. The top of the table is a glass triangle that needs to balance on a single support. If the coordinates of the vertices of the triangle are at $(3,6),(5,2)$, and $(7,10)$, at what point should the support be placed?

Example 4 4. COORDINATE GEOMETRY Find the coordinates of the orthocenter of $\triangle A B C$ with vertices $A(-3,3), B(-1,7)$, and $C(3,3)$.

Examples 1-2 In $\triangle S Z U, U J=9, V J=3$, and $Z T=18$. Find each length.
5. $Y J$
6. $S J$
7. $Y U$
8. $S V$
9. $J T$
10. ZJ

Example 3 COORDINATE GEOMETRY Find the coordinates of the centroid of each triangle with the given vertices.
11. $A(-1,11), B(3,1), C(7,6)$
12. $X(5,7), Y(9,-3), Z(13,2)$
(13) INTERIOR DESIGN Emilia made a collage with pictures of her friends. She wants to hang the collage from the ceiling in her room so that it is parallel to the ceiling. A diagram of the collage is shown in the graph at the right. At what point should she place the string?

Example 4 COORDINATE GEOMETRY Find the coordinates of the orthocenter of each triangle with the given vertices.
14. $J(3,-2), K(5,6), L(9,-2)$
15. $R(-4,8), S(-1,5), T(5,5)$

Identify each segment $\overline{B D}$ as $a(n)$ altitude, median, or perpendicular bisector.
16.

17.

18.

19.

20. CCSS SENSE-MAKING In the figure at the right, if J, P, and L are the midpoints of $\overline{K H}, \overline{H M}$, and $\overline{M K}$, respectively, find x, y, and z.

Copy and complete each statement for $\triangle R S T$ for medians $\overline{R M}, \overline{S L}$ and $\overline{T K}$, and centroid J.
21. $S L=x(J L)$
22. $J T=x(T K)$
23. $J M=x(R J)$

ALGEBRA Use the figure at the right.

24. If $\overline{E C}$ is an altitude of $\triangle A E D, m \angle 1=2 x+7$, and $m \angle 2=3 x+13$, find $m \angle 1$ and $m \angle 2$.
(25) Find the value of x if $A C=4 x-3, D C=2 x+9$,
 $m \angle E C A=15 x+2$, and $\overline{E C}$ is a median of $\triangle A E D$. Is $\overline{E C}$ also an altitude of $\triangle A E D$? Explain.
25. GAMES The game board shown is shaped like an equilateral triangle and has indentations for game pieces. The game's objective is to remove pegs by jumping over them until there is only one peg left. Copy the game board's outline and determine which of the points of concurrency the blue peg represents: circumcenter, incenter, centroid, or orthocenter. Explain your reasoning.

ARGUMENTS Use the given information to determine whether $\overline{L M}$ is a perpendicular bisector, median, and/or an altitude of $\triangle J K L$.
27. $\overline{L M} \perp \overline{J K}$
28. $\triangle J L M \cong \triangle K L M$
29. $\overline{J M} \cong \overline{K M}$
30. $\overline{L M} \perp \overline{J K}$ and $\overline{J L} \cong \overline{K L}$

31. PROOF Write a paragraph proof.

Given: $\triangle X Y Z$ is isosceles. $\overline{W Y}$ bisects $\angle Y$.
Prove: $\overline{W Y}$ is a median.

32. PROOF Write an algebraic proof.

Given: $\frac{\triangle X Y Z}{\overline{Y S}, \overline{Z Q}}$ with medians $\overline{X R}$,
Prove: $\frac{X P}{P R}=2$

33. 5 MULTIPLE REPRESENTATIONS In this problem, you will investigate the location of the points of concurrency for any equilateral triangle.
a. Concrete Construct three different equilateral triangles on tracing paper and cut them out. Fold each triangle to locate the circumcenter, incenter, centroid, and orthocenter.
b. Verbal Make a conjecture about the relationships among the four points of concurrency of any equilateral triangle.
c. Graphical Position an equilateral triangle and its circumcenter, incenter, centroid, and orthocenter on the coordinate plane using variable coordinates. Determine the coordinates of each point of concurrency.

ALGEBRA In $\triangle J L P, m \angle J M P=3 x-6$, $J K=3 y-2$, and $L K=5 y-8$.
34. If $\overline{J M}$ is an altitude of $\triangle J L P$, find x.
35. Find $L K$ if $\overline{P K}$ is a median.

36. PROOF Write a coordinate proof to prove the Centroid Theorem.
Given: $\triangle A B C$, medians $\overline{A R}, \overline{B S}$, and $\overline{C Q}$
Prove: The medians intersect at point P and P is two thirds of the distance from each vertex to the midpoint of the opposite side.

(Hint: First, find the equations of the lines containing the medians. Then find the coordinates of point P and show that all three medians intersect at point P.
Next, use the Distance Formula and multiplication to show $A P=\frac{2}{3} A R, B P=\frac{2}{3} B S$, and $C P=\frac{2}{3} C Q$.)

H.O.T. Problems Use Higher-order Thinking skills

(37) ERROR ANALYSIS Based on the figure at the right, Luke says that $\frac{2}{3} A P=A D$. Kareem disagrees. Is either of them correct? Explain your reasoning.

38. CCSS ARGUMENTS Determine whether the following statement is true or false. If true, explain your reasoning. If false, provide a counterexample.

The orthocenter of a right triangle is always located at the vertex of the right angle.
39. CHALLENGE $\triangle A B C$ has vertices $A(-3,3), B(2,5)$, and $C(4,-3)$. What are the coordinates of the centroid of $\triangle A B C$? Explain the process you used to reach your conclusion.
40. WRITING IN MATH Compare and contrast the perpendicular bisectors, medians, and altitudes of a triangle.
41. CHALLENGE In the figure at the right, segments $\overline{A D}$ and $\overline{C E}$ are medians of $\triangle A C B, \overline{A D} \perp \overline{C E}, A B=10$, and $C E=9$. Find $C A$.

42. OPEN ENDED In this problem, you will investigate the relationships among three points of concurrency in a triangle.
a. Draw an acute triangle and find the circumcenter, centroid, and orthocenter.
b. Draw an obtuse triangle and find the circumcenter, centroid, and orthocenter.
c. Draw a right triangle and find the circumcenter, centroid, and orthocenter.
d. Make a conjecture about the relationships among the circumcenter, centroid, and orthocenter.
43. WRITING IN MATH Use area to explain why the centroid of a triangle is its center of gravity. Then use this explanation to describe the location for the balancing point for a rectangle.
44. In the figure below, $\overline{G J} \cong \overline{H J}$. Which must be true?

A $\overline{F J}$ is an altitude of $\triangle F G H$.
B $\overline{F J}$ is an angle bisector of $\triangle F G H$.
C $\overline{F J}$ is a median of $\triangle F G H$.
D $\overline{F J}$ is a perpendicular bisector of $\triangle F G H$.
45. GRIDDED RESPONSE What is the x-intercept of the graph of $4 x-6 y=12$?
46. ALGEBRA Four students have volunteered to fold pamphlets for a local community action group. Which student is the fastest?

Student	Folding Speed
Neiva	1 page every 3 seconds
Sarah	2 pages every 10 seconds
Quinn	30 pages per minute
Deron	45 pages in 2 minutes

F Deron
H Quinn
G Neiva
J Sarah
47. SAT/ACT 80 percent of 42 is what percent of 16 ?
A 240
D 50
B 210
E 30
C 150

Spiral Review

Find each measure. (Lesson 5-1)
48. $L M$

49. $D F$

50. TQ

Position and label each triangle on the coordinate plane. (Lesson 4-8)
51. right $\triangle X Y Z$ with hypotenuse $\overline{X Z}, Z Y$ is twice $X Y$, and $\overline{X Y}$ is b units long
52. isosceles $\triangle Q R T$ with base $\overline{Q R}$ that is b units long

Determine whether $\overleftrightarrow{R S}$ and $\overleftrightarrow{J K}$ are parallel, perpendicular, or neither. Graph each line to verify your answer. (Lesson 3-3)
53. $R(5,-4), S(10,0), J(9,-8), K(5,-13) \quad$ 54. $R(1,1), S(9,8), J(-6,1), K(2,8)$
55. HIGHWAYS Near the city of Hopewell, Virginia, Route 10 runs perpendicular to Interstate 95 and Interstate 295. Show that the angles at the intersections of Route 10 with Interstate 95 and Interstate 295 are congruent. (Lesson 2-8)

Skills Review

PROOF Write a flow proof of the Exterior Angle Theorem.
56. Given: $\triangle X Y Z$

Prove: $m \angle X+m \angle Z=m \angle 1$

