Inequalities in Two Triangles

-Then
 $:$ Why?

- You used inequalities to make comparisons in one triangle.

Common Core State Standards

Content Standards
G.C0.10 Prove theorems about triangles.

Mathematical Practices

3 Construct viable arguments and critique the reasoning of others.
1 Make sense of problems and persevere in solving them.

Apply the Hinge Theorem or its converse to make comparisons in two triangles.Prove triangle relationships using the Hinge Theorem or its converse.

- A car jack is used to lift a car. The jack shown below is one of the simplest still in use today. Notice that as the jack is lowered, the legs of isosceles $\triangle A B C$ remain congruent, but the included angle A widens and $\overline{B C}$, the side opposite $\angle A$, lengthens.

Hinge Theorem The observation in the example above is true of any type of triangle and illustrates the following theorems.

Theorems Inequalities in Two Triangles

5.13 Hinge Theorem If two sides of a triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second triangle, then the third side of the first triangle is longer than the third side of the second triangle.
Example: If $\overline{A B} \cong \overline{F G}, \overline{A C} \cong \overline{F H}$, and $m \angle A>m \angle F$, then $B C>G H$.

5.14 Converse of the Hinge Theorem If two sides of a triangle are congruent to two sides of another triangle, and the third side in the first is longer than the third side in the second triangle, then the included angle measure of the first triangle is greater than the included angle measure in the second triangle.
Example: If $\bar{J} \cong \overline{P R}, \overline{K L} \cong \overline{Q R}$, and $P Q>J K$, then $m \angle R>m \angle L$.

The proof of Theorem 5.13 is on p. 372. You will prove Theorem 5.14 in Exercise 28.

Exemple 1 Use the Hinge Theorem and its Converse

Compare the given measures.
a. $W X$ and $X Y$
b. $m \angle F C D$ and $m \angle B F C$

In $\triangle W X Z$ and $\triangle Y X Z, \overline{W Z} \cong \overline{Y Z}$, $\overline{X Z} \cong \overline{X Z}$, and $\angle Y Z X>\angle W Z X$.
By the Hinge Theorem,
$m \angle W Z X<m \angle Y Z X$, so $W X<X Y$.

In $\triangle B C F$ and $\triangle D F C, \overline{B F} \cong \overline{D C}$, $\overline{F C} \cong \overline{C F}$, and $B C>F D$. By the Converse of the Hinge Theorem, $\angle B F C>\angle D C F$.

StudyTip

SAS and SSS Inequality Theorem The Hinge Theorem is also called the SAS Inequality Theorem. The Converse of the Hinge Theorem is also called the SSS Inequality Theorem.

GuidedPractice

Compare the given measures.

1A. $J K$ and $M Q$

1B. $m \angle S R T$ and $m \angle V R T$

Proof Hinge Theorem

Given: $\triangle A B C$ and $\triangle D E F$, $\overline{A C} \cong \overline{D F}, \overline{B C} \cong \overline{E F}$ $m \angle F>m \angle C$

Prove: $D E>A B$

Proof:

We are given that $\overline{A C} \cong \overline{D F}$ and $\overline{B C} \cong \overline{E F}$. We also know that $m \angle F>m \angle C$.
Draw auxiliary ray $F P$ such that $m \angle D F P=m \angle C$ and that $\overline{P F} \cong \overline{B C}$. This leads to two cases.

Case 1 Plies on $\overline{D E}$.

Then $\triangle F P D \cong \triangle C B A$ by SAS. Thus, $P D=B A$ by CPCTC and the definition of congruent segments.

By the Segment Addition Postulate, $D E=E P+P D$. Also, $D E>P D$ by the definition of inequality. Therefore, $D E>A B$ by substitution.

Case $2 P$ does not lie on $\overline{D E}$.
Then let the intersection of $\overline{F P}$ and $\overline{E D}$ be point T, and draw another auxiliary segment $\overline{F Q}$ such that Q is on $\overline{D E}$ and $\angle E F Q \cong \angle Q F P$. Then draw auxiliary segments $\overline{P D}$ and $\overline{P Q}$.

Since $\overline{F P} \cong \overline{B C}$ and $\overline{B C} \cong \overline{E F}$, we have $\overline{F P} \cong \overline{E F}$ by the Transitive Property. Also $\overline{Q F}$ is congruent to itself by the Reflexive Property. Thus, $\triangle E F Q \cong \triangle P F Q$ by SAS. By CPCTC, $\overline{E Q} \cong \overline{P Q}$ or $E Q=P Q$. Also, $\triangle F P D \cong \triangle C B A$ by SAS. So, $\overline{P D} \cong \overline{B A}$ by CPCTC and $P D=B A$.

In $\triangle Q P D, Q D+P Q>P D$ by the Triangle Inequality Theorem. By substitution, $Q D+E Q>P D$. Since $E D=Q D+E Q$ by the Segment Addition Postulate, $E D>P D$. Using substitution, $E D>B A$ or $D E>A B$.

Real-WorldLink

There are over 225,000 miles of groomed and marked snowmobile trails in North America.

Source: International Snowmobile Manufacturers Association

Problem-SolvingTip

Draw a Diagram Draw a diagram to help you see and correctly interpret a problem that has been described in words.

You can use the Hinge Theorem to solve real-world problems.

Realworld Example 2 Use the Hinge Theorem
SNOWMOBILING Two groups of snowmobilers leave from the same base camp. Group A goes 7.5 miles due west and then turns 35° north of west and goes 5 miles. Group B goes 7.5 miles due east and then turns 40° north of east and goes 5 miles. At this point, which group is farther from the base camp? Explain your reasoning.
Understand Using the sets of directions given in the problem, you need to determine which snowmobile group is farther from the base camp. A turn of 35° north of west is correctly interpreted as shown.

Plan Draw a diagram of the situation.

The paths taken by each group and the straight-line distance back to the camp form two triangles. Each group goes 7.5 miles and then turns and goes 5 miles.

Use linear pairs to find the measures of the included angles. Then apply the Hinge Theorem to compare the distance each group is from base camp.

Solve The included angle for the path made by Group A measures 180-35 or 145. The included angle for the path made by Group B is $180-40$ or 140 .

Since $145>140, A C>B C$ by the Hinge Theorem. So Group A is farther from the base camp.

Check Group B turned 5° more than Group A did back toward base camp, so they should be closer to base camp than Group A. Thus, Group A should be farther from the base camp.

GuidedPractice

2A. SKIING Two groups of skiers leave from the same lodge. Group A goes 4 miles due east and then turns 70° north of east and goes 3 miles. Group B goes 4 miles due west and then turns 75° north of west and goes 3 miles. At this point, which group is farther from the lodge? Explain your reasoning.

2B. SKIING In problem 2A, suppose Group A instead went 4 miles west and then turned 45° north of west and traveled 3 miles. Which group would be closer to the lodge? Explain your reasoning.

When the included angle of one triangle is greater than the included angle in a second triangle, the Converse of the Hinge Theorem is used.

StudyTip

Using Additional Facts When finding a range for the possible values for x, you may need to use one of the following facts.

- The measure of any angle is always greater than 0 and less than 180.
- The measure of any segment is always greater than 0 .

Exemple 3 Apply Algebra to the Relationships in Triangles

ALGEBRA Find the range of possible values for x.
Step 1 From the diagram, we know that
$\overline{J H} \cong \overline{G H}, \overline{E H} \cong \overline{E H}$, and $J E>E G$.

$$
\begin{aligned}
m \angle J H E & >m \angle E H G & & \begin{array}{l}
\text { Converse of the } \\
\\
\text { Hinge Theorem }
\end{array} \\
6 x+15 & >65 & & \text { Substitution } \\
x & >8 \frac{1}{3} & & \text { Solve for } x .
\end{aligned}
$$

Step 2 Use the fact that the measure of any angle in a triangle is less than 180 to write a second inequality.

$$
\begin{aligned}
m \angle J H E & <180 & & \\
6 x+15 & <180 & & \text { Substitution } \\
x & <27.5 & & \text { Solve for } x .
\end{aligned}
$$

Step 3 Write $x>8 \frac{1}{3}$ and $x<27.5$ as the compound inequality $8 \frac{1}{3}<x<27.5$.

GuidedPractice

3. Find the range of possible values for x.

Prove Relationships In Two Triangles You can use the Hinge Theorem and its converse to prove relationships in two triangles.

Example 4 Prove Triangle Relationships Using Hinge Theorem

Write a two-column proof.
Given: $\overline{A B} \cong \overline{A D}$
Prove: $E B>E D$
Proof:
Statements

Reasons

1. Given
2. Reflexive Property
3. Angle Addition Postulate
4. $m \angle E A B=m \angle E A D+m \angle D A B$
5. Definition of Inequality
6. $E B>E D$
7. Hinge Theorem

GuidedPractice

4. Write a two-column proof.

Given: $\overline{R Q} \cong \overline{S T}$
Prove: $R S>T Q$

Exemple 5 Prove Relationships Using Converse of Hinge Theorem

Write a flow proof.

Given: T is the midpoint of $\overline{Z X}$.

$$
\overline{S T} \cong \overline{W T}
$$

$$
S Z>W X
$$

Prove: $m \angle X T R>m \angle Z T Y$

Flow Proof:

GuidedPractice

5. Write a two-column proof.

Given: $\overline{N K}$ is a median of $\triangle J M N$. $J N>N M$
Prove: $m \angle 1>m \angle 2$

Gheck Your Understanding
Example 1 Compare the given measures.

1. $m \angle A C B$ and $m \angle G D E$

(3) $Q T$ and $S T$

2. $J L$ and $K M$

3. $m \angle X W Z$ and $m \angle Y Z W$

Example 2
5. SWINGS The position of the swing changes based on how hard the swing is pushed.
a. Which pairs of segments are congruent?
b. Is the measure of $\angle A$ or the measure of $\angle D$ greater? Explain.

Example 3 Find the range of possible values for \boldsymbol{x}.
6.

7.

Examples 4-5 CCSS ARGUMENTS Write a two-column proof.

8. Given: $\triangle Y Z X$
$\overline{Y Z} \cong \overline{X W}$
Prove: $Z X>Y W$

9. Given: $\overline{A D} \cong \overline{C B}$
$D C<A B$
Prove: $m \angle C B D<m \angle A D B$

Example 1 Compare the given measures.

10. $m \angle B A C$ and $m \angle D G E$

11. $m \angle M L P$ and $m \angle T S R$

12. $P S$ and $S R$

13. $S R$ and $X Y$

14. $J K$ and $H J$

Example 2
16. CAMPING Pedro and Joel are camping in a national park. One morning, Pedro decides to hike to the waterfall. He leaves camp and goes 5 miles east then turns 15° south of east and goes 2 more miles. Joel leaves the camp and travels 5 miles west, then turns 35° north of west and goes 2 miles to the lake for a swim.
a. When they reach their destinations, who is closer to the camp? Explain your reasoning. Include a diagram.
b. Suppose instead of turning 35° north of west, Joel turned 10° south of west. Who would then be farther from the camp? Explain your reasoning. Include a diagram.

Example 3 Find the range of possible values for \boldsymbol{x}.

17.

19

21. CRANES In the diagram, a crane is shown lifting an object to two different heights. The length of the crane's arm is fixed, and $\overline{M P} \cong \overline{R T}$. Is $\overline{M N}$ or $\overline{R S}$ shorter? Explain your reasoning.

Examples 4-5 CCSS ARGUMENTS Write a two-column proof.

23. Given: $\overline{L K} \cong \overline{J K}, \overline{R L} \cong \overline{R J}$
K is the midpoint of $\overline{Q S}$. $m \angle S K L>m \angle Q K J$

Prove: $R S>Q R$

25. Given: $\overline{X U} \cong \overline{V W}, V W>X W$ $\overline{X U} \| \overline{V W}$

Prove: $m \angle X Z U>m \angle U Z V$

18.

20.

22. LOCKERS Neva and Shawn both have their lockers open as shown in the diagram. Whose locker forms a larger angle? Explain your reasoning.

24. Given: $\overline{V R} \cong \overline{R T}, \overline{W V} \cong \overline{W T}$ $m \angle S R V>m \angle Q R T$ R is the midpoint of $\overline{S Q}$.

Prove: $W S>W Q$

26. Given: $\overline{A F} \cong \overline{D J}, \overline{F C} \cong \overline{J B}$

$$
A B>D C
$$

Prove: $m \angle A F C>m \angle D J B$

(27) EXERCISE Anica is doing knee-supported bicep curls as part of her strength training.

a. Is the distance from Anica's fist to her shoulder greater in Position 1 or Position 2? Justify your answer using measurement.
b. Is the measure of the angle formed by Anica's elbow greater in Position 1 or Position 2? Explain your reasoning.
28. PROOF Use an indirect proof to prove the SSS Inequality Theorem (Theorem 5.14).

Given: $\begin{aligned} \overline{R S} & \cong \overline{U W} \\ \overline{S T} & \cong \overline{W V} \\ R T & >U V\end{aligned}$
Prove: $m \angle S>m \angle W$

29. PROOF If $\overline{P R} \cong \overline{P Q}$ and $S Q>S R$, write a two-column proof to prove $m \angle 1<m \angle 2$.

30. SCAVENGER HUNT Stephanie, Mario, Lee, and Luther are participating in a scavenger hunt as part of a geography lesson. Their map shows that the next clue is 50 feet due east and then 75 feet 35° east of north starting from the fountain in the school courtyard. When they get ready to turn and go 75 feet 35° east of north, they disagree about which way to go, so they split up and take the paths shown in the diagram below.

a. Which pair chose the correct path? Explain your reasoning.
b. Which pair is closest to the fountain when they stop? Explain your reasoning.

SENSE-MAKING Use the figure at the right to write an inequality relating the given pair of angle or segment measures.
31. $C B$ and $A B$
32. $m \angle F B G$ and $m \angle B F A$
33. $m \angle B G C$ and $m \angle F B A$

Use the figure at the right to write an inequality relating the given pair of angles or segment measures.
34. $m \angle Z U Y$ and $m \angle Z U W$
(35) $W U$ and $Y U$
36. $W X$ and $X Y$

37. MULTIPLE REPRESENTATIONS In this problem, you will investigate properties of polygons.
a. Geometric Draw a three-sided, a four-sided, and a five-sided polygon. Label the 3 -sided polygon $A B C$, the four-sided polygon FGHJ, and the five-sided polygon $P Q R S T$. Use a protractor to measure and label each angle.
b. Tabular Copy and complete the table below.

Number of sides	Angle Measures				Sum of Angles
3	$m \angle A$		$m \angle C$		
	$m \angle B$				
4	$m \angle F$		$m \angle H$		
	$m \angle G$		$m \angle J$		
5	$m \angle P$		$m \angle S$		
	$m \angle Q$		$m \angle T$		
	$m \angle R$				

c. Verbal Make a conjecture about the relationship between the number of sides of a polygon and the sum of the measures of the angles of the polygon.
d. Logical What type of reasoning did you use in part c? Explain.
e. Algebraic Write an algebraic expression for the sum of the measures of the angles for a polygon with n sides.

H.O.T. Problems Use Higher-Order Thinking Skills

38. CHALLENGE If $m \angle L J N>m \angle K J L, K J \cong J N$, and $J N \perp N L$, which is greater, $m \angle L K N$ or $m \angle L N K$? Explain your reasoning.
39. OPEN ENDED Give a real-world example of an object that uses a hinge.
 Draw two sketches in which the hinge on your object is adjusted to two different positions. Use your sketches to explain why Theorem 5.13 is called the Hinge Theorem.
40. CHALLENGE Given $\triangle R S T$ with median $\overline{R Q}$, if $R T$ is greater than or equal to $R S$, what are the possible classifications of $\triangle R Q T$? Explain your reasoning.
41. CCSS PRECISION If $\overline{B D}$ is a median and $A B<B C$, then $\angle B D C$ is always, sometimes, or never an acute angle. Explain.
42. WRITING IN MATH Compare and contrast the Hinge Theorem to the SAS Postulate for triangle congruence.

43. SHORT RESPONSE Write an inequality to describe the possible range of values for x.

44. Which of the following is the inverse of the statement If it is snowing, then Steve wears his snow boots?

A If Steve wears his snow boots, then it is snowing.
B If it is not snowing, then Steve does not wear his snow boots.
C If it is not snowing, then Steve wears his snow boots.
D If it never snows, then Steve does not own snow boots.
45. ALGEBRA Which linear function best describes the graph shown?
F $y=-\frac{1}{4} x+5$
G $y=-\frac{1}{4} x-5$
H $y=\frac{1}{4} x+5$

J $y=\frac{1}{4} x-5$
46. SAT/ACT If the side of a square is $x+3$, then the diagonal of the square is
A $x^{2}+1$
D $x^{2} \sqrt{2}+6$
B $x \sqrt{2}+3 \sqrt{2}$
E $x^{2}+9$
C $2 x+6$

Spiral Revicw

Find the range for the measure of the third side of a triangle given the measures of two sides. (Lesson 5-5)
47. $3.2 \mathrm{~cm}, 4.4 \mathrm{~cm}$
48. $5 \mathrm{ft}, 10 \mathrm{ft}$
49. $3 \mathrm{~m}, 9 \mathrm{~m}$
50. CRUISES Ally asked Tavia the cost of a cruise she and her best friend went on after graduation. Tavia could not remember how much it cost per person, but she did remember that the total cost was over $\$ 500$. Use indirect reasoning to show that the cost for one person was more than $\$ 250$. (Lesson 5-4)

Draw and label a figure to represent the congruent triangles. Then find x. (Lesson 4-3)
51. $\triangle Q R S \cong \triangle G H J, R S=12, Q R=10, Q S=6$, and $H J=2 x-4$.
52. $\triangle A B C \cong \triangle X Y Z, A B=13, A C=19, B C=21$, and $X Y=3 x+7$.

Use the figure at the right. (Lesson 1-4)
53. Name the vertex of $\angle 4$.
54. What is another name for $\angle 2$?
55. What is another name for $\angle B C A$?

Skills Review

Find the value of the variable(s) in each figure. Explain your reasoning.
56.

57.

58.

