Inequalities in Two Triangles

GuidedPractice

Compare the given measures.

By the Segment Addition Postulate, DE = EP + PD. Also, DE > PD by the definition of inequality. Therefore, DE > AB by substitution.

Case 2 *P* does not lie on \overline{DE} .

Then let the intersection of \overline{FP} and \overline{ED} be point *T*, and draw another auxiliary segment \overline{FQ} such that *Q* is on \overline{DE} and $\angle EFQ \cong \angle QFP$. Then draw auxiliary segments \overline{PD} and \overline{PQ} .

Since $\overline{FP} \cong \overline{BC}$ and $\overline{BC} \cong \overline{EF}$, we have $\overline{FP} \cong \overline{EF}$ by the Transitive Property. Also \overline{QF} is congruent to itself by the Reflexive Property. Thus, $\triangle EFQ \cong \triangle PFQ$ by SAS. By CPCTC, $\overline{EQ} \cong \overline{PQ}$ or EQ = PQ. Also, $\triangle FPD \cong \triangle CBA$ by SAS. So, $\overline{PD} \cong \overline{BA}$ by CPCTC and PD = BA.

In $\triangle QPD$, QD + PQ > PD by the Triangle Inequality Theorem. By substitution, QD + EQ > PD. Since ED = QD + EQ by the Segment Addition Postulate, ED > PD. Using substitution, ED > BA or DE > AB.

StudyTip

SAS and SSS Inequality Theorem The Hinge Theorem is also called the SAS Inequality Theorem. The Converse of the Hinge Theorem is also called the SSS Inequality Theorem.

Real-WorldLink

There are over 225,000 miles of groomed and marked snowmobile trails in North America.

Source: International Snowmobile Manufacturers Association

Problem-SolvingTip

Draw a Diagram Draw a diagram to help you see and correctly interpret a problem that has been described in words.

You can use the Hinge Theorem to solve real-world problems.

Real-World Example 2 Use the Hinge Theorem

SNOWMOBILING Two groups of snowmobilers leave from the same base camp. Group A goes 7.5 miles due west and then turns 35° north of west and goes 5 miles. Group B goes 7.5 miles due east and then turns 40° north of east and goes 5 miles. At this point, which group is farther from the base camp? Explain your reasoning.

Understand Using the sets of directions given in the problem, you need to determine which snowmobile group is farther from the base camp. A turn of 35° north of west is correctly interpreted as shown.

PT

Plan Draw a diagram of the situation.

The paths taken by each group and the straight-line distance back to the camp form two triangles. Each group goes 7.5 miles and then turns and goes 5 miles.

Use linear pairs to find the measures of the included angles. Then apply the Hinge Theorem to compare the distance each group is from base camp.

Solve The included angle for the path made by Group A measures 180 – 35 or 145. The included angle for the path made by Group B is 180 – 40 or 140.

Since 145 > 140, AC > BC by the Hinge Theorem. So Group A is farther from the base camp.

Check Group B turned 5° more than Group A did back toward base camp, so they should be closer to base camp than Group A. Thus, Group A should be farther from the base camp. ✓

GuidedPractice

- **2A. SKIING** Two groups of skiers leave from the same lodge. Group A goes 4 miles due east and then turns 70° north of east and goes 3 miles. Group B goes 4 miles due west and then turns 75° north of west and goes 3 miles. At this point, which group is *farther* from the lodge? Explain your reasoning.
- **2B. SKIING** In problem 2A, suppose Group A instead went 4 miles west and then turned 45° north of west and traveled 3 miles. Which group would be *closer* to the lodge? Explain your reasoning.

When the included angle of one triangle is greater than the included angle in a second triangle, the Converse of the Hinge Theorem is used.

Prove Relationships In Two Triangles You can use the Hinge Theorem and its converse to prove relationships in two triangles.

Evenuelo 4. Dunus Trionale Deleti	making Using Ulings Theorem	PT
Example 4 Prove Irlangle Relation	onsnips using Hinge Theorem	
Write a two-column proof.	В	
Given: $\overline{AB} \cong \overline{AD}$	A	
Prove: $EB > ED$		
Proof:	F	
Statements	Reasons	
1. $\overline{AB} \cong \overline{AD}$	1. Given	
2. $\overline{AE} \cong \overline{AE}$	2. Reflexive Property	
3. $m \angle EAB = m \angle EAD + m \angle DAB$	3. Angle Addition Postulate	
4. $m \angle EAB > m \angle EAD$	4. Definition of Inequality	
5. <i>EB</i> > <i>ED</i>	5. Hinge Theorem	
Out to dDeparties		
GuidedPractice		
4. Write a two-column proof.	RQ	
Given: $\overline{RQ} \cong \overline{ST}$		
Prove: $RS > TQ$	2	
	S	

Check Your Understanding = Step-by-Step Solutions begin on page R14. Compare the given measures.

Example 1

2. *JL* and *KM*

4. $m \angle XWZ$ and $m \angle YZW$

PT

- **a.** Which pairs of segments are congruent?
- **b.** Is the measure of $\angle A$ or the measure of $\angle D$ greater? Explain.

Extra Practice is on page R5.

Example 3 Find the range of possible values for *x*.

Examples 4–5 CSS ARGUMENTS Write a two-column proof.

Practice and Problem Solving

Example 1 Compare the given measures. **10.** *m*∠*BAC* and *m*∠*DGE* **12.** *SR* and *XY* **11.** $m \angle MLP$ and $m \angle TSR$ MR Ζ A 01 R Ε 3 6 10 3 С 109 Т D 6 G **(13)** $m \angle TUW$ and $m \angle VUW$ **15.** *JK* and *HJ* **14.** *PS* and *SR* Н Ω 10 29° 38 12 10 39° 44° W 11 R S ĸ

Example 2

16. CAMPING Pedro and Joel are camping in a national park. One morning, Pedro decides to hike to the waterfall. He leaves camp and goes 5 miles east then turns 15° south of east and goes 2 more miles. Joel leaves the camp and travels 5 miles west, then turns 35° north of west and goes 2 miles to the lake for a swim.

- **a.** When they reach their destinations, who is closer to the camp? Explain your reasoning. Include a diagram.
- **b.** Suppose instead of turning 35° north of west, Joel turned 10° south of west. Who would then be farther from the camp? Explain your reasoning. Include a diagram.

Example 3

Find the range of possible values for *x*.

21. CRANES In the diagram, a crane is shown lifting an object to two different heights. The length of the crane's arm is fixed, and $\overline{MP} \cong \overline{RT}$. Is \overline{MN} or \overline{RS} shorter? Explain your reasoning.

5*x*

22. LOCKERS Neva and Shawn both have their lockers open as shown in the diagram. Whose locker forms a larger angle? Explain your reasoning.

Examples 4–5 Examples 4–5 Exam

23. Given: $\overline{LK} \cong \overline{JK}, \overline{RL} \cong \overline{RJ}$ *K* is the midpoint of \overline{QS} . $m\angle SKL > m\angle QKJ$

Prove: RS > QR

25. Given: $\overline{XU} \cong \overline{VW}$, VW > XW $\overline{XU} \parallel \overline{VW}$

Prove: $m \angle XZU > m \angle UZV$

24. Given: $\overline{VR} \cong \overline{RT}$, $\overline{WV} \cong \overline{WT}$ $m \angle SRV > m \angle QRT$ R is the midpoint of \overline{SQ} .

26. Given: $\overline{AF} \cong \overline{DJ}, \overline{FC} \cong \overline{JB}$ AB > DC

Prove: $m \angle AFC > m \angle DJB$

7 EXERCISE Anica is doing knee-supported bicep curls as part of her strength training.

- **a.** Is the distance from Anica's fist to her shoulder greater in Position 1 or Position 2? Justify your answer using measurement.
- **b.** Is the measure of the angle formed by Anica's elbow greater in Position 1 or Position 2? Explain your reasoning.
- **28. PROOF** Use an indirect proof to prove the SSS Inequality Theorem (Theorem 5.14).

29. PROOF If $\overline{PR} \cong \overline{PQ}$ and SQ > SR, write a two-column proof to prove $m \angle 1 < m \angle 2$.

- a. Which pair chose the correct path? Explain your reasoning.
- **b.** Which pair is closest to the fountain when they stop? Explain your reasoning.

SENSE-MAKING Use the figure at the right to write an inequality relating the given pair of angle or segment measures.

- **31.** *CB* and *AB*
- **32.** $m \angle FBG$ and $m \angle BFA$
- **33.** $m \angle BGC$ and $m \angle FBA$

Use the figure at the right to write an inequality relating the given pair of angles or segment measures.

34. $m \angle ZUY$ and $m \angle ZUW$

35) *WU* and *YU*

36. *WX* and *XY*

- **37. 5 MULTIPLE REPRESENTATIONS** In this problem, you will investigate properties of polygons.
 - **a. Geometric** Draw a three-sided, a four-sided, and a five-sided polygon. Label the 3-sided polygon *ABC*, the four-sided polygon *FGHJ*, and the five-sided polygon *PQRST*. Use a protractor to measure and label each angle.
 - b. Tabular Copy and complete the table below.

Number of sides		Angle M	Sum of Angles		
3	m∠A		m∠C		
	m∠B				
4	m∠F		m∠H		
	m∠G		m∠J		
5	m∠P		m∠S		
	m∠Q		m∠T		
	m∠R				

- **c. Verbal** Make a conjecture about the relationship between the number of sides of a polygon and the sum of the measures of the angles of the polygon.
- d. Logical What type of reasoning did you use in part c? Explain.
- **e. Algebraic** Write an algebraic expression for the sum of the measures of the angles for a polygon with *n* sides.

H.O.T. Problems Use Higher-Order Thinking Skills

38. CHALLENGE If $m \angle LJN > m \angle KJL$, $KJ \cong JN$, and $JN \perp NL$, which is greater, $m \angle LKN$ or $m \angle LNK$? Explain your reasoning.

- **40.** CHALLENGE Given $\triangle RST$ with median \overline{RQ} , if *RT* is greater than or equal to *RS*, what are the possible classifications of $\triangle RQT$? Explain your reasoning.
- **41. (SS) PRECISION** If \overline{BD} is a median and AB < BC, then $\angle BDC$ is *always, sometimes,* or *never* an acute angle. Explain.
- **42.** WRITING IN MATH Compare and contrast the Hinge Theorem to the SAS Postulate for triangle congruence.

Standardized Test Practice

43. SHORT RESPONSE Write an inequality to describe the possible range of values for *x*.

- **44.** Which of the following is the inverse of the statement If it is snowing, then Steve wears his snow boots?
 - A If Steve wears his snow boots, then it is snowing.
 - **B** If it is not snowing, then Steve does not wear his snow boots.
 - **C** If it is not snowing, then Steve wears his snow boots.
 - **D** If it never snows, then Steve does not own snow boots.

45. ALGEBRA Which linear function best describes the graph shown?

$$\mathbf{F} \ y = -\frac{1}{4}x + 5$$

G
$$y = -\frac{1}{4}x - 5$$

$$\mathbf{J} \ y = \frac{1}{4}x - 5$$

Α

B

С

H $y = \frac{1}{4}x + 5$

-				- 8-	y				
				4				/	۲
-8	3	_4	1	0		4	1	8	3 x
-{	3		1	0 _4		2	1	8	3 X

46. SAT/ACT If the side of a square is x + 3, then the diagonal of the square is

 $x^{2} + 9$

$$\begin{array}{rcl}
x^2 + 1 & \mathbf{D} & x^2 \sqrt{2} + 6 \\
x \sqrt{2} + 3 \sqrt{2} & \mathbf{E} & x^2 + 9 \\
2x + 6 & \end{array}$$

Spiral Review

Find the range for the measure of the third side of a triangle given the measures of two sides. (Lesson 5-5)

47. 3.2 cm, 4.4 cm	48. 5 ft, 10 ft	49. 3 m, 9 m
---------------------------	------------------------	---------------------

50. CRUISES Ally asked Tavia the cost of a cruise she and her best friend went on after graduation. Tavia could not remember how much it cost per person, but she did remember that the total cost was over \$500. Use indirect reasoning to show that the cost for one person was more than \$250. (Lesson 5-4)

Draw and label a figure to represent the congruent triangles. Then find x. (Lesson 4-3)

- **51.** $\triangle QRS \cong \triangle GHJ$, RS = 12, QR = 10, QS = 6, and HJ = 2x 4.
- **52.** $\triangle ABC \cong \triangle XYZ$, AB = 13, AC = 19, BC = 21, and XY = 3x + 7.
- Use the figure at the right. (Lesson 1-4)
- **53.** Name the vertex of $\angle 4$.
- **54.** What is another name for $\angle 2$?
- **55.** What is another name for $\angle BCA$?

Skills Review

Find the value of the variable(s) in each figure. Explain your reasoning.

