Similar Triangles

Then

- You used the AAS,

SSS, and SAS
Congruence
Theorems to prove triangles congruent.

Common Core State Standards

Content Standards

G.SRT. 4 Prove theorems about triangles.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Mathematical Practices

4 Model with mathematics.
7 Look for and make use of structure.

Why?

Julian wants to draw a similar version of his skate club's logo on a poster. He first draws a line at the bottom of the poster. Next, he uses a cutout of the original triangle to copy the two bottom angles. Finally, he extends the noncommon sides of the two angles.

Use similar triangles to solve problems.

Identify Similar Triangles The example suggests that two triangles are similar if two pairs of corresponding angles are congruent.

Postulate 7.1 Angle-Angle (AA) Similarity

If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.
Example If $\angle A \cong \angle F$ and $\angle B \cong \angle G$, then $\triangle A B C \sim \triangle F G H$.

PT
Example 1 Use the AA Similarity Postulate
Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
a.

$\bigvee_{Q}^{M 7^{\circ} \quad 75^{\circ}}{ }^{P}$
b.

a. Since $m \angle L=m \angle M, \angle L \cong \angle M$. By the Triangle Sum Theorem, $57+48+m \angle K=180$, so $m \angle K=75$. Since $m \angle P=75, \angle K \cong \angle P$. So, $\triangle L J K \sim \triangle M Q P$ by AA Similarity.
b. $\angle R S X \cong \angle W S T$ by the Vertical Angles Theorem. Since $\overline{R X} \| \overline{T W}, \angle R \cong \angle W$. So, $\triangle R S X \sim \triangle W S T$ by AA Similarity.

GuidedPractice

1A.

$1 B$.

You can use the AA Similarity Postulate to prove the following two theorems.

Theorems Triangle Similarity

7.2 Side-Side-Side (SSS) Similarity

If the corresponding side lengths of two triangles are proportional, then the triangles are similar.
Example If $\frac{J K}{M P}=\frac{K L}{P Q}=\frac{L J}{Q M \text {, }}$ then

$$
\triangle J K L \sim \triangle M P Q
$$

7.3 Side-Angle-Side (SAS) Similarity

If the lengths of two sides of one triangle are proportional to the lengths of two corresponding sides of another triangle and the included angles are congruent, then the triangles are similar.
Example If $\frac{R S}{X Y}=\frac{S T}{Y Z}$ and $\angle S \cong \angle Y$, then

$$
\triangle R S T \sim \triangle X Y Z
$$

StudyTip

Corresponding Sides To determine which sides of two triangles correspond, begin by comparing the longest sides, then the next longest sides, and finish by comparing the shortest sides.

You will prove Theorem 7.3 in Exercise 25.

Proof Theorem 7.2

Given: $\frac{A B}{F G}=\frac{B C}{G H}=\frac{A C}{F H}$
Prove: $\triangle A B C \sim \triangle F G H$

Paragraph Proof:

Locate J on $\overline{F G}$ so that $J G=A B$.
Draw $\overline{J K}$ so that $\overline{J K} \| \overline{F H}$.
Label $\angle G J K$ as $\angle 1$.

Since $\angle G \cong \angle G$ by the Reflexive Property and $\angle 1 \cong \angle F$ by the
Corresponding Angles Postulate,
$\triangle G J K \sim \triangle G F H$ by the AA
Similarity Postulate.

By the definition of similar polygons, $\frac{J G}{F G}=\frac{G K}{G H}=\frac{J K}{F H}$. By substitution,
$\frac{A B}{F G}=\frac{G K}{G H}=\frac{J K}{F H}$.
Since we are also given that $\frac{A B}{F G}=\frac{B C}{G H}=\frac{A C}{F H}$, we can say that $\frac{G K}{G H}=\frac{B C}{G H}$ and $\frac{J K}{F H}=\frac{A C}{F H}$. This means that $G K=B C$ and $J K=A C$, so $\overline{G K} \cong \overline{B C}$ and $\overline{J K} \cong \overline{A C}$.

By SSS, $\triangle A B C \cong \triangle J G K$.
By CPCTC, $\angle B \cong \angle G$ and $\angle A \cong \angle 1$. Since $\angle 1 \cong \angle F, \angle A \cong \angle F$ by the Transitive Property. By AA Similarity, $\triangle A B C \sim \triangle F G H$.

Example 2 Use the SSS and SAS Similarity Theorems

Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
a.

b.

$\frac{P R}{S R}=\frac{8}{20}$ or $\frac{2}{5}, \frac{P Q}{S T}=\frac{6}{15}$ or $\frac{2}{5}$, and $\frac{Q R}{T R}=\frac{5}{12.5}=\frac{50}{125}$
or $\frac{2}{5}$. So, $\triangle P Q R \sim \triangle S T R$ by the SSS Similarity Theorem.

StudyTip

Draw Diagrams It is helpful to redraw similar triangles so that the corresponding side lengths have the same orientation.

Test-TakingTip

Identifying Nonexamples Sometimes test questions require you to find a nonexample, as in this case. You must check each option until you find a valid nonexample. If you would like to check your answer, confirm that each additional option is correct.

GuidedPractice

$2 A$.

2B.

You can decide what is sufficient to prove that two triangles are similar.

Standardred Test Example 3 Sufficient Conditions

In the figure, $\angle A D B$ is a right angle. Which of the following would not be sufficient to prove that $\triangle A D B \sim \triangle C D B ?$
A $\frac{A D}{B D}=\frac{B D}{C D}$
C $\angle A B D \cong \angle C$
B $\frac{A B}{B C}=\frac{B D}{C D}$
D $\frac{A D}{B D}=\frac{B D}{C D}=\frac{A B}{B C}$

Read the Test Item

You are given that $\angle A D B$ is a right angle and asked to identify which additional information would not be enough to prove that $\triangle A D B \sim \triangle C D B$.

Solve the Test Item

Since $\angle A D B$ is a right angle, $\angle C D B$ is also a right angle. Since all right angles are congruent, $\angle A D B \cong \angle C D B$. Check each answer choice until you find one that does not supply a sufficient additional condition to prove that $\triangle A D B \sim \triangle C D B$.

Choice A: If $\frac{A D}{B D}=\frac{B D}{C D}$ and $\angle A D B \cong \angle C D B$, then $\triangle A D B \sim \triangle C D B$ by SAS Similarity.

Choice B: If $\frac{A B}{B C}=\frac{B D}{C D}$ and $\angle A D B \cong \angle C D B$, then we cannot conclude that $\triangle A D B \sim \triangle C D B$ because the included angle of side $\overline{A B}$ and $\overline{B D}$ is not $\angle A D B$. So the answer is B .

GuidedPractice

3. If $\triangle J K L$ and $\triangle F G H$ are two triangles such that $\angle J \cong \angle F$, which of the following would be sufficient to prove that the triangles are similar?
F $\frac{K L}{G H}=\frac{J L}{F H}$
G $\frac{J L}{J K}=\frac{F H}{F G}$
H $\frac{J K}{F G}=\frac{K L}{G H}$
J $\quad \frac{J L}{J K}=\frac{G H}{F G}$

2
Use Similar Triangles Like the congruence of triangles, similarity of triangles is reflexive, symmetric, and transitive.

Theorem 7.4 Properties of Similarity

Reflexive Property of Similarity $\quad \triangle A B C \sim \triangle A B C$
Symmetric Property of Similarity If $\triangle A B C \sim \triangle D E F$, then $\triangle D E F \sim \triangle A B C$.
Transitive Property of Similarity If $\triangle A B C \sim \triangle D E F$, and $\triangle D E F \sim \triangle X Y Z$,
then $\triangle A B C \sim \triangle X Y Z$.
You will prove Theorem 7.4 in Exercise 26.

Example 4 Parts of Similar Triangles

Find $B E$ and $A D$.
Since $\overline{B E} \| \overline{C D}, \angle A B E \cong \angle B C D$, and $\angle A E B \cong \angle E D C$ because they are corresponding angles. By AA Similarity, $\triangle A B E \sim \triangle A C D$.

$$
\begin{aligned}
\frac{A B}{A C} & =\frac{B E}{C D} & & \text { Definition of Similar Polygons } \\
\frac{3}{5} & =\frac{x}{3.5} & & A C=5, C D=3.5, A B=3, B E
\end{aligned}
$$

$$
\begin{aligned}
3.5 \cdot 3 & =5 \cdot x & & \text { Cross Products Property } \\
2.1 & =x & & B E \text { is 2.1. } \\
\frac{A C}{A B} & =\frac{A D}{A E} & & \text { Definition of Similar Polygons } \\
\frac{5}{3} & =\frac{y+3}{y} & & A C=5, A B=3, A D=y+3, A E=y \\
5 \cdot y & =3(y+3) & & \text { Cross Products Property } \\
5 y & =3 y+9 & & \text { Distributive Property } \\
2 y & =9 & & \text { Subtract } 3 y \text { from each side. } \\
y & =4.5 & & A D \text { is } y+3 \text { or } 7.5 .
\end{aligned}
$$

GuidedPractice

Find each measure.

4A. $Q P$ and $M P$

4B. $W R$ and $R T$

Real-World Example 5 Indirect Measurement

ROLLER COASTERS Hallie is estimating the height of the Superman roller coaster in Mitchellville, Maryland. She is 5 feet 3 inches tall and her shadow is 3 feet long. If the length of the shadow of the roller coaster is 40 feet, how tall is the roller coaster?

Understand Make a sketch of the situation. 5 feet 3 inches is equivalent to 5.25 feet.

Plan In shadow problems, you can assume that the angles formed by the Sun's rays with any two objects are congruent and that the two objects form the sides of two right triangles.

Since two pairs of angles are congruent, the right triangles are similar by the AA Similarity Postulate. So, the following proportion can be written.
$\frac{\text { Hallie's height }}{\text { coaster's height }}=\frac{\text { Hallie's shadow length }}{\text { coaster's shadow length }}$
Solve Substitute the known values and let $x=$ roller coaster's height.

$\frac{5.25}{x}$	$=\frac{3}{40}$		Substitution
$3 \cdot x$	$=40(5.25)$		Cross Products Property
$3 x$	$=210$		Simplify.
x	$=70$		Divide each side by 3.

The roller coaster is 70 feet tall.
Check The roller coaster's shadow length is $\frac{40 \mathrm{ft}}{3 \mathrm{ft}}$ or about 13.3 times Hallie's shadow length. Check to see that the roller coaster's height is about 13.3 times Hallie's height. $\frac{70 \mathrm{ft}}{5.25 \mathrm{ft}} \approx 13.3 \checkmark$

GuidedPractice

5. BUILDINGS Adam is standing next to the Palmetto Building in Columbia, South Carolina. He is 6 feet tall and the length of his shadow is 9 feet. If the length of the shadow of the building is 322.5 feet, how tall is the building?

ConceptSummary Triangle Similarity

AA Similarity Postulate

If $\angle A \cong \angle X$ and $\angle C \cong \angle Z$,
then $\triangle A B C \sim \triangle X Y Z$.

SSS Similarity Theorem

If $\frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{C A}{Z X}$,
then $\triangle A B C \sim \triangle X Y Z$.

SAS Similarity Theorem

If $\angle A \cong \angle X$ and $\frac{A B}{X Y}=\frac{C A}{Z X}$,
then $\triangle A B C \sim \triangle X Y Z$.

Examples 1-2 Determine whether the triangles are similar. If so, write a similarity statement. Explain your reasoning.
1.

2.

3.

4.

Example 3 5. MULTIPLE CHOICE In the figure, $\overline{A B}$ intersects $\overline{D E}$ at point C. Which additional information would be enough to prove that $\triangle A D C \sim \triangle B E C$?

A $\angle D A C$ and $\angle E C B$ are congruent.
B $\overline{A C}$ and $\overline{B C}$ are congruent.
C $\overline{A D}$ and $\overline{E B}$ are parallel.

D $\angle C B E$ is a right angle.

Example 4 CCSS STRUCTURE Identify the similar triangles. Find each measure.

6. $K L$

7. $V S$

Example 5 8. COMMUNICATION A cell phone tower casts a 100-foot shadow. At the same time, a 4 -foot 6 -inch post near the tower casts a shadow of 3 feet 4 inches. Find the height of the tower.

Practice and Problem Solving

Examples 1-3 Determine whether the triangles are similar. If so, write a similarity statement. If not, what would be sufficient to prove the triangles similar? Explain your reasoning.
9.

10.

(11)

Examples 1-3 Determine whether the triangles are similar. If so, write a similarity statement. If not, what would be sufficient to prove the triangles similar? Explain your reasoning.
12.

13.

14.

15. CCSS MODELING When we look at an object, it is projected on the retina through the pupil. The distances from the pupil to the top and bottom of the object are congruent and the distances from the pupil to the top and bottom of the image on the retina are congruent. Are the triangles formed between the object and the pupil and the object and the image similar? Explain your reasoning.

Example 4 ALGEBRA Identify the similar triangles. Then find each measure.

16. $J K$

(17) $S T$

17. WZ, UZ

18. $H J, H K$

19. $D B, C B$

20. $G D, D H$

Example 5

22. STATUES Mei is standing next to a statue in the park. If Mei is 5 feet tall, her shadow is 3 feet long, and the statue's shadow is $10 \frac{1}{2}$ feet long, how tall is the statue?
23. SPORTS When Alonzo, who is $5^{\prime} 11^{\prime \prime}$ tall, stands next to a basketball goal, his shadow is 2^{\prime} long, and the basketball goal's shadow is $4^{\prime} 4^{\prime \prime}$ long. About how tall is the basketball goal?
24. FORESTRY A hypsometer, as shown, can be used to estimate the height of a tree. Bartolo looks through the straw to the top of the tree and obtains the readings given. Find the height of the tree.

PROOF Write a two-column proof.
25. Theorem 7.3
26. Theorem 7.4

PROOF Write a two-column proof.
27. Given: $\triangle X Y Z$ and $\triangle A B C$ are right triangles; $\frac{X Y}{A B}=\frac{Y Z}{B C}$.
Prove: $\triangle Y X Z \sim \triangle B A C$

28. Given: $A B C D$ is a trapezoid.

Prove: $\frac{D P}{P B}=\frac{C P}{P A}$

29. CCSS MODELING When Luis's dad threw a bounce pass to him, the angles formed by the basketball's path were congruent. The ball landed $\frac{2}{3}$ of the way between them before it bounced back up. If Luis's dad released the ball 40 inches above the floor, at what height did Luis catch the ball?

COORDINATE GEOMETRY $\triangle X Y Z$ and $\triangle W Y V$ have vertices $X(-1,-9), Y(5,3), Z(-1,6)$, $W(1,-5)$, and $V(1,5)$.
30. Graph the triangles, and prove that $\triangle X Y Z \sim \triangle W Y V$.
(31) Find the ratio of the perimeters of the two triangles.
32. BILLIARDS When a ball is deflected off a smooth surface, the angles formed by the path are congruent. Booker hit the orange ball and it followed the path from A to B to C as shown below. What was the total distance traveled by the ball from the time Booker hit it until it came to rest at the end of the table?

33. PROOF Use similar triangles to show that the slope of the line through any two points on that line is constant. That is, if points A, B, A^{\prime} and B^{\prime} are on line ℓ, use similar triangles to show that the slope of the line from A to B is equal to the slope of the line from A^{\prime} to B^{\prime}.

34. CHANGING DIMENSIONS Assume that $\triangle A B C \sim \triangle J K L$.
a. If the lengths of the sides of $\triangle J K L$ are half the length of the sides of $\triangle A B C$, and the area of $\triangle A B C$ is 40 square inches, what is the area of $\triangle J K L$? How is the area related to the scale factor of $\triangle A B C$ to $\triangle J K L$?
b. If the lengths of the sides of $\triangle A B C$ are three times the length of the sides of $\triangle J K L$, and the area of $\triangle A B C$ is 63 square inches, what is the area of $\triangle J K L$? How is the area related to the scale factor of $\triangle A B C$ to $\triangle J K L$?
(35) MEDICINE Certain medical treatments involve laser beams that contact and penetrate the skin, forming similar triangles. Refer to the diagram at the right. How far apart should the laser sources be placed to ensure that the areas treated by each source do not overlap?

36. MULTIPLE REPRESENTATIONS In this problem, you will explore proportional parts of triangles.
a. Geometric Draw $\triangle A B C$ with $\overline{D E}$ parallel to $\overline{A C}$ as shown at the right.
b. Tabular Measure and record the lengths $A D, D B, C D$, and $E B$ and the ratios $\frac{A D}{D B}$ and $\frac{C E}{E B}$ in a table.

c. Verbal Make a conjecture about the segments created by a line parallel to one side of a triangle and intersecting the other two sides.

4.O.T. Problems Use Higher-Order Thinking Skills

37. WRITING IN MATH Compare and contrast the AA Similarity Postulate, the SSS Similarity Theorem, and the SAS similarity theorem.
38. CHALLENGE $\overline{Y W}$ is an altitude of $\triangle X Y Z$. Find $Y W$.
39. CCSS REASONING A pair of similar triangles has angle measures of $50^{\circ}, 85^{\circ}$, and 45°. The sides of one triangle measure $3,3.25$, and 4.23 units, and the sides of
 the second triangle measure $x-0.46, x$, and $x+1.81$ units. Find the value of x.
40. OPEN ENDED Draw a triangle that is similar to $\triangle A B C$ shown. Explain how you know that it is similar.
41. E1. WRITING IN MATH How can you choose
 an appropriate scale?
42. PROBABILITY $\frac{x!}{(x-3)!}=$
A 3.0
C $x^{2}-3 x+2$
B 0.33
D $x^{3}-3 x^{2}+2 x$
43. EXTENDED RESPONSE In the figure below, $\overline{E B} \| \overline{D C}$.

a. Write a proportion that could be used to find x.
b. Find the value of x and the measure of $\overline{A B}$.
44. ALGEBRA Which polynomial represents the area of the shaded region?

F πr^{2}
G $\pi r^{2}+r^{2}$
H $\pi r^{2}+r$
J $\pi r^{2}-r^{2}$

45. SAT/ACT The volume of a certain rectangular solid is $16 x$ cubic units. If the dimensions of the solid are integers x, y, and z units, what is the greatest possible value of z ?
A 32
D 4
B 16
E 2
C 8

Spiral Raviaw

List all pairs of congruent angles, and write a proportion that relates the corresponding sides for each pair of similar polygons. (Lesson 7-2)
46. $\triangle J K L \sim \triangle C D E$

47. $W X Y Z \sim Q R S T$

48. FGHJ ~MPQS

Solve each proportion. (Lesson 7-1)
49. $\frac{3}{4}=\frac{x}{16}$
50. $\frac{x}{10}=\frac{22}{50}$
51. $\frac{20.2}{88}=\frac{12}{x}$
52. $\frac{x-2}{2}=\frac{3}{8}$
53. TANGRAMS A tangram set consists of seven pieces: a small square, two small congruent right triangles, two large congruent right triangles, a medium-sized right triangle, and a quadrilateral. How can you determine the shape of the quadrilateral? Explain. (Lesson 6-3)

Determine which postulate can be used to prove that the triangles are congruent.
If it is not possible to prove congruence, write not possible. (Lesson 4-4)
54.

55.

56.

Skills Revigw

Write a two-column proof.
57. Given: $r \| t ; \angle 5 \cong \angle 6$

Prove: $\ell \| m$

