Similarity Transformations

\section*{| \cdot Then | \because Now | \because Why? |
| :--- | :--- | :--- |}

- You identified congruence transformations.

NewVocabulary

 dilationsimilarity transformation center of dilation scale factor of a dilation enlargement reduction

Common Core State Standards

Content Standards

G.SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
G.SRT. 5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures.

Mathematical Practices
6 Attend to precision.
4 Model with mathematics.

Identify similarity transformations.

Verify similarity after a similarity transformation.

- Adriana uses a copier to enlarge a movie ticket to use as the background for a page in her movie ticket scrapbook. She places the ticket on the glass of the copier. Then she must decide what percentage to input in order to create an image that is three times as big as her original ticket.

Polaris Center 14 Presenting
BEST MOVIE EVER 4:00 PM Sat 1/17/09 MATINEE 11:50 Auditorium 8
00912300050027 01/17/09 2:20 PM
6.4 cm

1Identify Similarity Transformations Recall from Lesson 4-7 that a transformation is an operation that maps an original figure, the preimage, onto a new figure called the image.

A dilation is a transformation that enlarges or reduces the original figure proportionally. Since a dilation produces a similar figure, a dilation is a type of similarity transformation.

Dilations are performed with respect to a fixed point called the center of dilation.

The scale factor of a dilation describes the extent of the dilation. The scale factor is the ratio of a length on the image to a corresponding length on the preimage.

$\triangle J K L$ is a dilation of $\triangle A B C$.
Center of dilation: (0,0)
Scale factor: $\frac{J K}{A B}$

The letter k usually represents the scale factor of a dilation. The value of k determines whether the dilation is an enlargement or a reduction.

ConceptSummary Types of Dilations

A dilation with a scale factor greater than 1 produces an enlargement, or an image that is larger than the original figure.
Symbols If $k>1$, the dilation is an enlargement.
Example $\triangle F G H$ is dilated by a scale factor of 3 to produce $\triangle R S T$. Since $3>1$, $\triangle R S T$ is an enlargement of $\triangle F G H$.

A dilation with a scale factor between 0 and 1 produces a reduction, an image that is smaller than the original figure.

Symbols If $0<k<1$, the dilation is a reduction.
Example $A B C D$ is dilated by a scale factor of $\frac{1}{4}$ to produce WXYZ. Since $0<\frac{1}{4}<1$,
$W X Y Z$ is a reduction of $A B C D$.

$0<k<1$

StudyTip

Multiple Representations The scale factor of a dilation can be represented as a fraction, a decimal, or as a percent. For example, a scale factor of $\frac{2}{5}$ can also be written as 0.4 or as 40%.

Exemple 1 Identify a Dilation and Find Its Scale Factor

Determine whether the dilation from A to B is an enlargement or a reduction. Then find the scale factor of the dilation.
a.

b.

GuidedPractice

1A.

$1 B$.

Dilations and their scale factors are used in many real-world situations.

Real-World Example 2 Find and Use a Scale Factor

COLLECTING Refer to the beginning of the lesson. By what percent should Adriana enlarge the ticket stub so that the dimensions of its image are 3 times that of her original? What will be the dimensions of the enlarged image?

Adriana wants to create a dilated image of her ticket stub using the copier. The scale factor of her enlargement is 3 . Written as a percent, the scale factor is $(3 \cdot 100) \%$ or 300%. Now find the dimension of the enlarged image using the
 scale factor.

$$
\text { width: } 5 \mathrm{~cm} \cdot 300 \%=15 \mathrm{~cm} \quad \text { length: } 6.4 \mathrm{~cm} \cdot 300 \%=19.2 \mathrm{~cm}
$$

The enlarged ticket stub image will be 15 centimeters by 19.2 centimeters.

GuidedPractice

2. If the resulting ticket stub image was 1.5 centimeters wide by about 1.9 centimeters long instead, what percent did Adriana mistakenly use to dilate the original image? Explain your reasoning.

StudyTip

Center of Dilation Unless otherwise stated, all dilations on the coordinate plane use the origin as their center of dilation.

Verify Similarity You can verify that a dilation produces a similar figure by comparing corresponding sides and angles. For triangles, you can also use SAS Similarity.

Example 3 Verify Similarity after a Dilation

Graph the original figure and its dilated image. Then verify that the dilation is a similarity transformation.
a. original: $A(-6,-3), B(3,3), C(3,-3)$; image: $X(-4,-2), Y(2,2), Z(2,-2)$

Graph each figure. Since $\angle C$ and $\angle Z$ are both right angles, $\angle C \cong \angle Z$. Show that the lengths of the sides that include $\angle C$ and $\angle Z$ are proportional.

Use the coordinate grid to find the side lengths.
$\frac{X Z}{A C}=\frac{6}{9}$ or $\frac{2}{3}$, and $\frac{Y Z}{B C}=\frac{4}{6}$ or $\frac{2}{3}$, so $\frac{X Z}{A C}=\frac{Y Z}{B C}$.
Since the lengths of the sides that include $\angle C$ and $\angle Z$ are proportional, $\triangle X Y Z \sim \triangle A B C$ by SAS Similarity.

b. original: $J(-6,4), K(6,8), L(8,2), M(-4,-2)$;
image: $P(-3,2), Q(3,4), R(4,1), S(-2,-1)$
Use the Distance Formula to find the length of each side.
$J K=\sqrt{[6-(-6)]^{2}+(8-4)^{2}}=\sqrt{160}$ or $4 \sqrt{10}$
$P Q=\sqrt{[3-(-3)]^{2}+(4-2)^{2}}=\sqrt{40}$ or $2 \sqrt{10}$
$K L=\sqrt{(8-6)^{2}+(2-8)^{2}}=\sqrt{40}$ or $2 \sqrt{10}$
$Q R=\sqrt{(4-3)^{2}+(1-4)^{2}}=\sqrt{10}$
$L M=\sqrt{(-4-8)^{2}+(-2-2)^{2}}=\sqrt{160}$ or $4 \sqrt{10}$

$R S=\sqrt{(-2-4)^{2}+(-1-1)^{2}}=\sqrt{40}$ or $2 \sqrt{10}$
$M J=\sqrt{[-6-(-4)]^{2}+[4-(-2)]^{2}}=\sqrt{40}$ or $2 \sqrt{10}$
$S P=\sqrt{[-3-(-2)]^{2}+[2-(-1)]^{2}}=\sqrt{10}$
Find and compare the ratios of corresponding sides.
$\frac{P Q}{J K}=\frac{2 \sqrt{10}}{4 \sqrt{10}}$ or $\frac{1}{2} \quad \frac{Q R}{K L}=\frac{\sqrt{10}}{2 \sqrt{10}}$ or $\frac{1}{2} \quad \frac{R S}{L M}=\frac{2 \sqrt{10}}{4 \sqrt{10}}$ or $\frac{1}{2} \quad \frac{S P}{M J}=\frac{\sqrt{10}}{2 \sqrt{10}}$ or $\frac{1}{2}$
$P Q R S$ and $J K L M$ are both rectangles. This can be proved by showing that diagonals $\overline{P R} \cong \overline{S Q}$ and $\overline{J L} \cong \overline{K M}$ are congruent using the Distance Formula. Since they are both rectangles, their corresponding angles are congruent.
Since $\frac{P Q}{J K}=\frac{Q R}{K L}=\frac{R S}{L M}=\frac{S P}{M J}$ and corresponding angles are congruent, $P Q R S \sim J K L M$.

GuidedPractice

3A. original: $A(2,3), B(0,1), C(3,0)$
image: $D(4,6), F(0,2), G(6,0)$
3B. original: $H(0,0), J(6,0), K(6,4), L(0,4)$
image: $W(0,0), X(3,0), Y(3,2), Z(0,2)$

Example $1 \quad$ Determine whether the dilation from A to B is an enlargement or a reduction. Then find the scale factor of the dilation.
1.

2.

(3) GAMES The dimensions of a regulation tennis court are 27 feet by 78 feet. The dimensions of a table tennis table are 152.5 centimeters by 274 centimeters. Is a table tennis table a dilation of a tennis court? If so, what is the scale factor? Explain.

Example 3 CCSS ARGUMENTS Verify that the dilation is a similarity transformation.
4.

5.

Practice and Problem Solving

Example 1 Determine whether the dilation from A to B is an enlargement or a reduction. Then find the scale factor of the dilation.
6.

7.

8.

9.

Determine whether each dilation is an enlargement or reduction.

Example 3 Graph the original figure and its dilated image. Then verify that the dilation is a similarity transformation.
14. $M(1,4), P(2,2), Q(5,5) ; S(-3,6), T(0,0), U(9,9)$
15. $A(1,3), B(-1,2), C(1,1) ; D(-7,-1), E(1,-5)$
16. $V(-3,4), W(-5,0), X(1,2) ; Y(-6,-2), Z(3,1)$
17. $J(-6,8), K(6,6), L(-2,4) ; D(-12,16), G(12,12), H(-4,8)$

If $\triangle A B C \sim \triangle A Y Z$, find the missing coordinate.
18.

(19)

20. GRAPHIC ART Aimee painted the sample sign shown using $\frac{1}{2}$ bottle of glass paint. The actual sign she will paint in a shop window is to be 3 feet by $7 \frac{1}{2}$ feet.

a. Explain why the actual sign is a dilation of her sample.
b. How many bottles of paint will Aimee need to complete the actual sign?
(21) MULTIPLE REPRESENTATIONS In this problem, you will investigate similarity of triangles on the coordinate plane.
a. Geometric Draw a triangle with vertex A at the origin. Make sure that the two additional vertices B and C have whole-number coordinates. Draw a similar triangle that is twice as large as $\triangle A B C$ with its vertex also located at the origin. Label the triangle $A D E$.
b. Geometric Repeat the process in part a two times. Label the second pair of triangles $M N P$ and $M Q R$ and the third pair $T W X$ and $T Y Z$. Use different scale factors than part a.

c. Tabular Copy and complete the table below with the appropriate values.

Coordinates											
$\triangle A B C$		$\triangle A D E$		$\triangle M N P$		$\triangle M Q R$		$\triangle T W X$		$\triangle T Y Z$	
A		A		M		M		T		T	
B		D		N		Q		W		Y	
C	E		P		R		X		Z		

d. Verbal Make a conjecture about how you could predict the coordinates of a dilated triangle with a scale factor of n if the two similar triangles share a corresponding vertex at the origin.

H.O.T. Problems Use Higher-Order Thinking Skills

22. CHALLENGE MNOP is a dilation of $A B C D$. How is the scale factor of the dilation related to the similarity ratio of $A B C D$ to $M N O P$? Explain your reasoning.
23. CCSS REASONING The coordinates of two triangles are provided in the table at the right. Is $\triangle X Y Z$ a dilation of $\triangle P Q R$? Explain.

$\triangle P Q R$		$\triangle X Y Z$	
P	(a, b)	X	$(3 a, 2 b)$
Q	(c, d)	Y	$(3 c, 2 d)$
R	(e, f)	Z	$(3 e, 2 f)$

OPEN ENDED Describe a real-world example of each transformation other than those given in this lesson.
24. enlargement
25. reduction
26. congruence transformation
27. WRITING IN MATH Explain how you can use scale factor to determine whether a transformation is an enlargement, a reduction, or a congruence transformation.
28. ALGEBRA Which equation describes the line that passes through $(-3,4)$ and is perpendicular to $3 x-y=6$?
A $y=-\frac{1}{3} x+4$
C $y=3 x+4$
В $y=-\frac{1}{3} x+3$
D $y=3 x+3$
29. SHORT RESPONSE What is the scale factor of the dilation shown below?

30. In the figure below, $\angle A \cong \angle C$.

Which additional information would not be enough to prove that $\triangle A D B \sim \triangle C E B$?
F $\frac{A B}{D B}=\frac{C B}{E B}$
$\mathbf{H} \overline{E D} \cong \overline{D B}$
G $\angle A D B \cong \angle C E B$
$\mathrm{J} \overline{E B} \perp \overline{A C}$
31. SAT/ACT $x=\frac{6}{4 p+3}$ and $x y=\frac{3}{4 p+3} \cdot y=$
A 4
C 1
E $\frac{1}{2}$
B 2
D $\frac{3}{4}$

Spiral Review

32. LANDSCAPING Shea is designing two gardens shaped like similar triangles. One garden has a perimeter of 53.5 feet, and the longest side is 25 feet. She wants the second garden to have a perimeter of 32.1 feet. Find the length of the longest side of this garden. (Lesson 7-5)

Determine whether $\overline{A B} \| \overline{C D}$. Justify your answer. (Lesson 7-4)
33. $A C=8.4, B D=6.3, D E=4.5$, and $C E=6$
34. $A C=7, B D=10.5, B E=22.5$, and $A E=15$
35. $A B=8, A E=9, C D=4$, and $C E=4$

If each figure is a kite, find each measure. (Lesson 6-6)
36. $Q R$

37. $m \angle K$

38. $B C$

39. PROOF Write a coordinate proof for the following statement. (Lesson 4-8) If a line segment joins the midpoints of two sides of a triangle, then it is parallel to the third side.

Skills Review

Solve each equation.

40. $145=29 \cdot t$
41. $216=d \cdot 27$
42. $2 r=67 \cdot 5$
43. $100 t=\frac{70}{240}$
44. $\frac{80}{4}=14 d$
45. $\frac{2 t+15}{t}=92$
