

Mid-Chapter Quiz

Lessons 4-1 through 4-4

- **1. COORDINATE GEOMETRY** Classify $\triangle ABC$ with vertices A(-2, -1), B(-1, 3), and C(2, 0) as *scalene*, *equilateral*, or *isosceles*. (Lesson 4-1)
- 2. MULTIPLE CHOICE Which of the following are the measures of the sides of isosceles triangle *QRS*? (Lesson 4-1)

- **A** 17, 17, 15
- **B** 15, 15, 16
- **3.** ALGEBRA Find *x* and the length of each side if $\triangle WXY$ is an equilateral triangle with sides $\overline{WX} = 6x 12$, $\overline{XY} = 2x + 10$, and $\overline{WY} = 4x 1$. (Lesson 4-1)

D 14, 14, 16

Find the measure of each angle indicated. (Lesson 4-2)

- **4.** *m*∠1 42° 72°/1 38°
- **5.** *m*∠2
- **6.** *m*∠3
- **7. ASTRONOMY** Leo is a constellation that represents a lion. Three of the brighter stars in the constellation form $\triangle LEO$. If the angles have measures as shown in the figure, find $m \angle OLE$. (Lesson 4-2)

Find the measure of each numbered angle. (Lesson 4-2)

14. ARCHITECTURE The

diagram shows an A-frame house with various points labeled. Assume that segments and angles that appear to be congruent in the diagram are congruent. Indicate which triangles are congruent. (Lesson 4-3)

15. MULTIPLE CHOICE Determine which statement is true given that $\triangle CBX \cong \triangle SML$. (Lesson 4-3)

F	$\overline{MO}\cong\overline{SL}$	H $\angle X \cong \angle S$
G	$\overline{XC} \cong \overline{ML}$	$J \angle XCB \cong \angle LSM$

16. BRIDGES A bridge truss is shown in the diagram below, where $\overline{AC} \perp \overline{BD}$ and *B* is the midpoint of \overline{AC} . What method can be used to prove that $\triangle ABD \cong \triangle CBD$? (Lesson 4-4)

Determine whether $\triangle PQR \cong \triangle XYZ$. (Lesson 4-4)

- **17.** *P*(3, -5), *Q*(11, 0), *R*(1, 6), *X*(5, 1), *Y*(13, 6), *Z*(3, 12)
- **18.** P(-3, -3), Q(-5, 1), R(-2, 6), X(2, -6), Y(3, 3), Z(5, -1)
- **19.** *P*(8, 1), *Q*(-7, -15), *R*(9, -6), *X*(5, 11), *Y*(-10, -5), *Z*(6, 4)
- 20. Write a two-column proof. (Lesson 4-4)
 - **Given:** $\triangle LMN$ is isos. with $\overline{LM} \cong \overline{NM}$, and \overline{MO} bisects $\angle LMN$.

Prove: $\triangle ML0 \cong \triangle MN0$

